summaryrefslogtreecommitdiff
path: root/python-pitchplots.spec
blob: 9dda50cb26d5331dbe239b6af04ee96de95cf267 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
%global _empty_manifest_terminate_build 0
Name:		python-pitchplots
Version:	1.4.2
Release:	1
Summary:	A package containing representation tools for musical purposes
License:	MIT License
URL:		https://github.com/DCMLab/pitchplots
Source0:	https://mirrors.aliyun.com/pypi/web/packages/1e/a4/6e04a2ec0d04473702e3f37c3d850b0056d0ed70ca0f5b9a61d3b368712a/pitchplots-1.4.2.tar.gz
BuildArch:	noarch

Requires:	python3-matplotlib
Requires:	python3-pandas
Requires:	python3-numpy

%description
# pitchplots

library plotting charts for different tonal representations

## Getting Started

The program consist in the following files: functions.py, reader.py, modified_musicxml_parser.py, parser.py and static.py 

### Prerequisites

What things you need to install the software and how to install them

```
You will need python on your computer and the following libaries: matplotlib, pandas and numpy
```

note that if you are using anaconda, these libraries are already installed

### Installing

You can download the pitchplots package on pypi with pip using the following command in the prompt:

```
python3 -m pip install pitchplots
```

or if you're using anaconda prompt

```
pip install pitchplots
```

## Running the tests

you can first try to parse xml/musicScore xml files to csv or DataFrame, that is the Gymnopédie from Sati with:

```python
import pitchplots.parser as ppp

# If no filepath is specified, will automatically charge data_example.mxl
df_data_example = ppp.xml_to_csv(save_csv=True)
```

then you can try the static module by passing csv files or Dataframe:

```
import pitchplots.static as pps

pps.tonnetz(df_data_example)
```
or
```
import pitchplots.static as pps

pps.circle('csv/data_example.csv')
```

to try the dynamic videos:
```
import pitchplots.dynamic as ppd

ppd.tonnetz_animation(df_data_example)
```

## Authors

* **Timothy Loayza**, **Fabian Moss**

## Use of magenta's code

The [modified_musicxml_parser.py](modified_musicxml_parser.py) file is taken from the [magenta](https://github.com/tensorflow/magenta) project and has been modified. Therefore the modifications are listed in the [magenta_musicxml_code_modifications.md](magenta_musicxml_code_modifications.md) file and there is the [magenta_LICENSE.md](magenta_LICENSE.md).

## License

This project is licensed under the MIT License - see the [LICENSE.md](LICENSE.md) file for details




%package -n python3-pitchplots
Summary:	A package containing representation tools for musical purposes
Provides:	python-pitchplots
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-pitchplots
# pitchplots

library plotting charts for different tonal representations

## Getting Started

The program consist in the following files: functions.py, reader.py, modified_musicxml_parser.py, parser.py and static.py 

### Prerequisites

What things you need to install the software and how to install them

```
You will need python on your computer and the following libaries: matplotlib, pandas and numpy
```

note that if you are using anaconda, these libraries are already installed

### Installing

You can download the pitchplots package on pypi with pip using the following command in the prompt:

```
python3 -m pip install pitchplots
```

or if you're using anaconda prompt

```
pip install pitchplots
```

## Running the tests

you can first try to parse xml/musicScore xml files to csv or DataFrame, that is the Gymnopédie from Sati with:

```python
import pitchplots.parser as ppp

# If no filepath is specified, will automatically charge data_example.mxl
df_data_example = ppp.xml_to_csv(save_csv=True)
```

then you can try the static module by passing csv files or Dataframe:

```
import pitchplots.static as pps

pps.tonnetz(df_data_example)
```
or
```
import pitchplots.static as pps

pps.circle('csv/data_example.csv')
```

to try the dynamic videos:
```
import pitchplots.dynamic as ppd

ppd.tonnetz_animation(df_data_example)
```

## Authors

* **Timothy Loayza**, **Fabian Moss**

## Use of magenta's code

The [modified_musicxml_parser.py](modified_musicxml_parser.py) file is taken from the [magenta](https://github.com/tensorflow/magenta) project and has been modified. Therefore the modifications are listed in the [magenta_musicxml_code_modifications.md](magenta_musicxml_code_modifications.md) file and there is the [magenta_LICENSE.md](magenta_LICENSE.md).

## License

This project is licensed under the MIT License - see the [LICENSE.md](LICENSE.md) file for details




%package help
Summary:	Development documents and examples for pitchplots
Provides:	python3-pitchplots-doc
%description help
# pitchplots

library plotting charts for different tonal representations

## Getting Started

The program consist in the following files: functions.py, reader.py, modified_musicxml_parser.py, parser.py and static.py 

### Prerequisites

What things you need to install the software and how to install them

```
You will need python on your computer and the following libaries: matplotlib, pandas and numpy
```

note that if you are using anaconda, these libraries are already installed

### Installing

You can download the pitchplots package on pypi with pip using the following command in the prompt:

```
python3 -m pip install pitchplots
```

or if you're using anaconda prompt

```
pip install pitchplots
```

## Running the tests

you can first try to parse xml/musicScore xml files to csv or DataFrame, that is the Gymnopédie from Sati with:

```python
import pitchplots.parser as ppp

# If no filepath is specified, will automatically charge data_example.mxl
df_data_example = ppp.xml_to_csv(save_csv=True)
```

then you can try the static module by passing csv files or Dataframe:

```
import pitchplots.static as pps

pps.tonnetz(df_data_example)
```
or
```
import pitchplots.static as pps

pps.circle('csv/data_example.csv')
```

to try the dynamic videos:
```
import pitchplots.dynamic as ppd

ppd.tonnetz_animation(df_data_example)
```

## Authors

* **Timothy Loayza**, **Fabian Moss**

## Use of magenta's code

The [modified_musicxml_parser.py](modified_musicxml_parser.py) file is taken from the [magenta](https://github.com/tensorflow/magenta) project and has been modified. Therefore the modifications are listed in the [magenta_musicxml_code_modifications.md](magenta_musicxml_code_modifications.md) file and there is the [magenta_LICENSE.md](magenta_LICENSE.md).

## License

This project is licensed under the MIT License - see the [LICENSE.md](LICENSE.md) file for details




%prep
%autosetup -n pitchplots-1.4.2

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "\"/%h/%f.gz\"\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-pitchplots -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Tue Jun 20 2023 Python_Bot <Python_Bot@openeuler.org> - 1.4.2-1
- Package Spec generated