1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
|
%global _empty_manifest_terminate_build 0
Name: python-predictit
Version: 2.0.7
Release: 1
Summary: Library/framework for making time series predictions with help of AutoML tools.
License: mit
URL: https://github.com/Malachov/predictit
Source0: https://mirrors.aliyun.com/pypi/web/packages/d2/48/507e40053dc68a72b5c9813f2d210f1106b17ee4cc497eff7b21de84e5e2/predictit-2.0.7.tar.gz
BuildArch: noarch
Requires: python3-mydatapreprocessing
Requires: python3-mylogging
Requires: python3-mypythontools
Requires: python3-numpy
Requires: python3-pandas
Requires: python3-eel
Requires: python3-scipy
Requires: python3-statsmodels
Requires: python3-sklearn
Requires: python3-tabulate
Requires: python3-matplotlib
Requires: python3-seaborn
Requires: python3-IPython
Requires: python3-typing-extensions
%description
# predictit
[](https://mybinder.org/v2/gh/Malachov/predictit/HEAD?filepath=demo.ipynb) [](https://pypi.python.org/pypi/predictit/) [](https://badge.fury.io/py/predictit) [](https://pepy.tech/project/predictit) [](https://lgtm.com/projects/g/Malachov/predictit/context:python) [](https://predictit.readthedocs.io/en/master/?badge=master) [](https://opensource.org/licenses/MIT) [](https://codecov.io/gh/Malachov/predictit)
Library/framework for making time series predictions. Choose the data, choose the models (ARIMA, regressions, LSTM...) from libraries like statsmodels, scikit-learn, tensorflow. Do the setup (it's not necessary of course, you can use some preset) and predict.
Library contain model Hyperparameter optimization as well as option variable optimization. That means, that library can find optimal preprocessing (smoothing, dropping non correlated columns, standardization) and on top of that it can find optimal hyperparameters such as number of neuron layers.
## Output
Most common output is plotly interactive graph and object with results array, results with history etc...
<p align="center">
<img src="docs/source/_static/img/output_example.png" width="620" alt="Plot of results"/>
</p>
<p align="center">
<img src="docs/source/_static/img/table_of_results.png" width="620" alt="Table of results"/>
</p>
## Links
[Repo on github](https://github.com/Malachov/predictit)
[Official readthedocs documentation](https://predictit.readthedocs.io)
## Installation
Python >=3.6 (Python 2 is not supported).
Install just with
```console
pip install predictit
```
Sometimes you can have issues with installing some libraries from requirements (e.g. numpy because not BLAS / LAPACK). There are also two libraries - Tensorflow and pyodbc not in requirements, because not necessary, but troublesome. If library not installed with pip, check which library don't work, install manually with stackoverflow and repeat...
There are some libraries that not every user will be using (e.g. Tensorflow or libraries for some data inputs). If you want to be sure to have all libraries, you can download `requirements_advanced.txt` and then install advanced requirements with `pip install -r requirements_advanced.txt`.
Library was developed during 2020 and structure and even API (configuration) changed a lot. From version 2.0 it's considered to be stable and following semantic versioning.
## How to
Software can be used as a python library or with command line arguments or as normal python script. Main function is `predict` in `main.py` script. There is also `predict_multiple_columns` function if you want to predict more at once (columns or time frequencies) and also `compare_models` function that tell you which models are best. It evaluates error criterion on out of sample test data instead of predict (which use as much data as possible). Some models, for example decision trees just assign input from learning set, so error in predict is 0, in compare_models its accurate. So first is optimal to use `compare_models`, find best models and then use it in predict.
Try live demo - playground on [binder](https://mybinder.org/v2/gh/Malachov/predictit/HEAD?filepath=demo.ipynb)
### Config
Import libraries
<!--phmdoctest-setup-->
```python
import predictit
import numpy as np
import pandas as pd
from predictit import config
```
and type `config.`, then, if not automatically, use ctrl + spacebar to see all subcategories and in subcategories, you can see description in the docstrings for all the configurable values.
<p align="center">
<img src="docs/source/_static/img/config_intellisense.png" width="620" alt="GUI"/>
</p>
You can edit config in two ways
1) As object attributes
You can use subcategories like `general`, `data_input`, `output`
```python
config.data_input.data = 'https://raw.githubusercontent.com/jbrownlee/Datasets/master/daily-min-temperatures.csv'
```
You can also use config instance directly for all the attributes and omit the subcategories (though without intellisense help).
```python
config.datetime_column = 'Date' # Will be used for resampling and result plot description
config.freq = "D" # One day - one value resampling
```
2) Multiple parameters at once with dictionary and update function
```python
config.update({
'datalength': 300, # Used datalength
'predicts': 14, # Number of predicted values
'default_n_steps_in': 12 # Value of recursive inputs in model (do not use too high - slower and worse predictions)
})
# After if you setup prediction as needed, it's simple
predictions = predictit.predict()
```
If you need create more configurations and don't want to override its values, you can create multiple instances, but you need to insert this new config as function parameter
```python
other_config = config.copy() # or predictit.configuration.Config()
other_config.predicts = 30 # This will not affect config for other examples
predictions_3 = predictit.predict(config=other_config)
```
### Simple example of using predictit as a python library and function arguments
Although there are many config variables, defaults should be enough.
```python
predictions_1 = predictit.predict(data=np.random.randn(100, 2), predicted_column=1, predicts=3)
```
There are only two positional arguments `data` and `predicted_column`(because, there is more than a hundred configurable values). So you can use also
```python
my_data = pd.DataFrame(np.random.randn(100, 2), columns=['a', 'b'])
predictions_1_positional = predictit.predict(my_data, 'b')
```
### Simple example of using `main.py` as a script
Open `configuration.py` (only script you need to edit (very simple)), do the setup. Mainly used_function and data or data_source and path. Then just run `main.py`.
### Simple example of using command line arguments
Run code below in terminal in predictit repository folder.
Use `python predictit/main.py --help` for more parameters' info.
```console
python predictit/main.py --used_function predict --data 'https://raw.githubusercontent.com/jbrownlee/Datasets/master/daily-min-temperatures.csv' --predicted_column 'Temp'
```
### Example of compare_models function
You can compare it on same data in various parts or on different data (check configuration on how to insert dictionary with data names)
```python
my_data_array = np.random.randn(200, 2) # Define your data here
config.update({
'data_all': {'First part': (my_data_array[:100], 0), 'Second part': (my_data_array[100:], 1)},
'predicted_column': 0
})
compared_models = predictit.compare_models()
```
### Example of predict_multiple function
```python
config.data = np.random.randn(120, 3)
config.predicted_columns = ['*'] # Define list of columns or '*' for predicting all of the numeric columns
config.used_models = ['Conjugate gradient', 'Decision tree regression'] # Use just few models to be faster
multiple_columns_prediction = predictit.predict_multiple_columns()
```
### Example of config variable optimization
```python
config.update({
'data': "https://raw.githubusercontent.com/jbrownlee/Datasets/master/daily-min-temperatures.csv",
'predicted_column': 'Temp',
'datalength': 120,
'optimization': True,
'optimization_variable': 'default_n_steps_in',
'optimization_values': [4, 6, 8],
'plot_all_optimized_models': False,
'print_table': 'detailed', # Print detailed table
'print_result_details': True,
'used_models': ['AR', 'Sklearn regression']
})
predictions_optimized_config = predictit.predict()
```
## Hyperparameters tuning
To optimize hyperparameters, just set `optimizeit: 1,` and model parameters limits. It is commented in it's docstrings how to use it. It's not grid bruteforce. It is a heuristic method based on halving interval is used, but still it can be time-consuming. It is recommended only to tune parameters worth of it. Or tune it by parts.
## GUI
It is possible to use basic GUI. But only with CSV data source. Just run `gui_start.py` if you have downloaded software or call `predictit.gui_start.run_gui()` if you are importing via PyPI. Screenshot of such a GUI
<p align="center">
<img src="docs/source/_static/img/GUI.png" width="620" alt="GUI"/>
</p>
Better GUI with fully customizable settings will be shipped next year, hopefully.
## Categorical embeddings
It is also possible to use string values in predictions. You can choose config values 'embedding' 'label' and every unique string will be assigned unique number, 'one-hot' create new column for every unique string (can be time-consuming).
## Feature engineering
For feature derivation, you can use difference transformations, first and second order differences, multiplications of columns, rolling mean, rolling standard deviations and also rolling fourier transform.
Feature selection is under development right now :[
## Data preprocessing, plotting and other Functions
You can use any library functions separately for your needs of course. mydatapreprocessing, mylogging and mypythontools are my other projects, which are used heavily. Example is here
```python
import mydatapreprocessing as mdp
from mypythontools.plots import plot
from predictit.analyze import analyze_column
data = "https://blockchain.info/unconfirmed-transactions?format=json"
# Load data from file or URL
data_loaded = mdp.load_data.load_data(data, request_datatype_suffix=".json", predicted_table='txs', data_orientation="index")
# Transform various data into defined format - pandas dataframe - convert to numeric if possible, keep
# only numeric data and resample ifg configured.
data_consolidated = mdp.preprocessing.data_consolidation(
data_loaded, predicted_column="weight", remove_nans_threshold=0.9, remove_nans_or_replace='interpolate')
# Predicted column is on index 0 after consolidation)
analyze_column(data_consolidated.iloc[:, 0])
# Preprocess data. It return preprocessed data, but also last undifferenced value and scaler for inverse
# transformation, so unpack it with _
data_preprocessed, _, _ = mdp.preprocessing.preprocess_data(data_consolidated, remove_outliers=True, smoothit=False,
correlation_threshold=False, data_transform=False, standardizeit='standardize')
# Plot inserted data
plot(data_preprocessed)
```
## Using just one model apart main function
Main benefit is performance boost. You can have code under the much simpler (much less code), but no features from configuration available.
```python
import mydatapreprocessing as mdp
data = mdp.generate_data.sin(1000)
test = data[-7:]
data = data[: -7]
data = mdp.preprocessing.data_consolidation(data)
# First tuple, because some models use raw data - one argument, e.g. [1, 2, 3...]
(X, y), x_input, _ = mdp.create_model_inputs.create_inputs(data.values, 'batch', input_type_params={'n_steps_in': 6})
trained_model = predictit.models.sklearn_regression.train((X, y), model='BayesianRidge')
predictions_one_model = predictit.models.sklearn_regression.predict(x_input, trained_model, predicts=7)
predictions_one_model_error = predictit.evaluate_predictions.compare_predicted_to_test(predictions_one_model, test, error_criterion='mape') # , plot=1
```
## Example of using library as a pro with deeper editing config
```python
config.update(
{
"data": r"https://raw.githubusercontent.com/jbrownlee/Datasets/master/daily-min-temperatures.csv", # Full CSV path with suffix
"predicted_column": "Temp", # Column name that we want to predict
"datalength": 200,
"predicts": 7, # Number of predicted values - 7 by default
"repeatit": 50, # Repeat calculation times on shifted data to evaluate error criterion
"other_columns": False, # Whether use other columns or not
# Chose models that will be computed - remove if you want to use all the models
"used_models": [
"AR",
"ARIMA",
"LNU",
"Conjugate gradient",
"Sklearn regression",
"Bayes ridge regression one column one step",
"Decision tree regression",
],
# Define parameters of models
"models_parameters": {
"AR": {
"used_model": "ar",
"method": "cmle",
"trend": "nc",
"solver": "lbfgs",
},
"ARIMA": {
"used_model": "arima",
"p": 6,
"d": 0,
"q": 0,
},
"LNU": {
"learning_rate": "infer",
"epochs": 10,
"w_predict": 0,
"normalize_learning_rate": False,
},
"Conjugate gradient": {"epochs": 200},
"Bayes ridge regression": {
"model": "BayesianRidge",
"n_iter": 300,
"alpha_1": 1.0e-6,
"alpha_2": 1.0e-6,
"lambda_1": 1.0e-6,
"lambda_2": 1.0e-6,
},
},
}
)
predictions_configured = predictit.predict()
```
## Performance - How to scale
Time series prediction is very different from image recognition and more data doesn't necessarily mean better prediction. If you're issuing performance problems, try fast preset (turn off optimizations, make less recurrent values, choose only few models, threshold datalength etc.) you can edit preset if you need. If you still have performance troubles, and you have too much data, use resampling and select only valuable columns - for example correlation_threshold and do not derive extra columns. If you are interested mostly in predictions and not in the plot, turn the plot off.
## Future work
It's planned to do real GUI and possibility to serve web app as well as desktop. Scalability can be solved two ways. First is incremental learning (not every model supports today). Second is virtualisation (processes running in cluster separately).
There is very big todo list on root called `TODO.md.`
## For developers
Any help from other developers very appreciated... :D
Don't be shy to create Issue, merge request or text on <malachovd@seznam.cz>
%package -n python3-predictit
Summary: Library/framework for making time series predictions with help of AutoML tools.
Provides: python-predictit
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-predictit
# predictit
[](https://mybinder.org/v2/gh/Malachov/predictit/HEAD?filepath=demo.ipynb) [](https://pypi.python.org/pypi/predictit/) [](https://badge.fury.io/py/predictit) [](https://pepy.tech/project/predictit) [](https://lgtm.com/projects/g/Malachov/predictit/context:python) [](https://predictit.readthedocs.io/en/master/?badge=master) [](https://opensource.org/licenses/MIT) [](https://codecov.io/gh/Malachov/predictit)
Library/framework for making time series predictions. Choose the data, choose the models (ARIMA, regressions, LSTM...) from libraries like statsmodels, scikit-learn, tensorflow. Do the setup (it's not necessary of course, you can use some preset) and predict.
Library contain model Hyperparameter optimization as well as option variable optimization. That means, that library can find optimal preprocessing (smoothing, dropping non correlated columns, standardization) and on top of that it can find optimal hyperparameters such as number of neuron layers.
## Output
Most common output is plotly interactive graph and object with results array, results with history etc...
<p align="center">
<img src="docs/source/_static/img/output_example.png" width="620" alt="Plot of results"/>
</p>
<p align="center">
<img src="docs/source/_static/img/table_of_results.png" width="620" alt="Table of results"/>
</p>
## Links
[Repo on github](https://github.com/Malachov/predictit)
[Official readthedocs documentation](https://predictit.readthedocs.io)
## Installation
Python >=3.6 (Python 2 is not supported).
Install just with
```console
pip install predictit
```
Sometimes you can have issues with installing some libraries from requirements (e.g. numpy because not BLAS / LAPACK). There are also two libraries - Tensorflow and pyodbc not in requirements, because not necessary, but troublesome. If library not installed with pip, check which library don't work, install manually with stackoverflow and repeat...
There are some libraries that not every user will be using (e.g. Tensorflow or libraries for some data inputs). If you want to be sure to have all libraries, you can download `requirements_advanced.txt` and then install advanced requirements with `pip install -r requirements_advanced.txt`.
Library was developed during 2020 and structure and even API (configuration) changed a lot. From version 2.0 it's considered to be stable and following semantic versioning.
## How to
Software can be used as a python library or with command line arguments or as normal python script. Main function is `predict` in `main.py` script. There is also `predict_multiple_columns` function if you want to predict more at once (columns or time frequencies) and also `compare_models` function that tell you which models are best. It evaluates error criterion on out of sample test data instead of predict (which use as much data as possible). Some models, for example decision trees just assign input from learning set, so error in predict is 0, in compare_models its accurate. So first is optimal to use `compare_models`, find best models and then use it in predict.
Try live demo - playground on [binder](https://mybinder.org/v2/gh/Malachov/predictit/HEAD?filepath=demo.ipynb)
### Config
Import libraries
<!--phmdoctest-setup-->
```python
import predictit
import numpy as np
import pandas as pd
from predictit import config
```
and type `config.`, then, if not automatically, use ctrl + spacebar to see all subcategories and in subcategories, you can see description in the docstrings for all the configurable values.
<p align="center">
<img src="docs/source/_static/img/config_intellisense.png" width="620" alt="GUI"/>
</p>
You can edit config in two ways
1) As object attributes
You can use subcategories like `general`, `data_input`, `output`
```python
config.data_input.data = 'https://raw.githubusercontent.com/jbrownlee/Datasets/master/daily-min-temperatures.csv'
```
You can also use config instance directly for all the attributes and omit the subcategories (though without intellisense help).
```python
config.datetime_column = 'Date' # Will be used for resampling and result plot description
config.freq = "D" # One day - one value resampling
```
2) Multiple parameters at once with dictionary and update function
```python
config.update({
'datalength': 300, # Used datalength
'predicts': 14, # Number of predicted values
'default_n_steps_in': 12 # Value of recursive inputs in model (do not use too high - slower and worse predictions)
})
# After if you setup prediction as needed, it's simple
predictions = predictit.predict()
```
If you need create more configurations and don't want to override its values, you can create multiple instances, but you need to insert this new config as function parameter
```python
other_config = config.copy() # or predictit.configuration.Config()
other_config.predicts = 30 # This will not affect config for other examples
predictions_3 = predictit.predict(config=other_config)
```
### Simple example of using predictit as a python library and function arguments
Although there are many config variables, defaults should be enough.
```python
predictions_1 = predictit.predict(data=np.random.randn(100, 2), predicted_column=1, predicts=3)
```
There are only two positional arguments `data` and `predicted_column`(because, there is more than a hundred configurable values). So you can use also
```python
my_data = pd.DataFrame(np.random.randn(100, 2), columns=['a', 'b'])
predictions_1_positional = predictit.predict(my_data, 'b')
```
### Simple example of using `main.py` as a script
Open `configuration.py` (only script you need to edit (very simple)), do the setup. Mainly used_function and data or data_source and path. Then just run `main.py`.
### Simple example of using command line arguments
Run code below in terminal in predictit repository folder.
Use `python predictit/main.py --help` for more parameters' info.
```console
python predictit/main.py --used_function predict --data 'https://raw.githubusercontent.com/jbrownlee/Datasets/master/daily-min-temperatures.csv' --predicted_column 'Temp'
```
### Example of compare_models function
You can compare it on same data in various parts or on different data (check configuration on how to insert dictionary with data names)
```python
my_data_array = np.random.randn(200, 2) # Define your data here
config.update({
'data_all': {'First part': (my_data_array[:100], 0), 'Second part': (my_data_array[100:], 1)},
'predicted_column': 0
})
compared_models = predictit.compare_models()
```
### Example of predict_multiple function
```python
config.data = np.random.randn(120, 3)
config.predicted_columns = ['*'] # Define list of columns or '*' for predicting all of the numeric columns
config.used_models = ['Conjugate gradient', 'Decision tree regression'] # Use just few models to be faster
multiple_columns_prediction = predictit.predict_multiple_columns()
```
### Example of config variable optimization
```python
config.update({
'data': "https://raw.githubusercontent.com/jbrownlee/Datasets/master/daily-min-temperatures.csv",
'predicted_column': 'Temp',
'datalength': 120,
'optimization': True,
'optimization_variable': 'default_n_steps_in',
'optimization_values': [4, 6, 8],
'plot_all_optimized_models': False,
'print_table': 'detailed', # Print detailed table
'print_result_details': True,
'used_models': ['AR', 'Sklearn regression']
})
predictions_optimized_config = predictit.predict()
```
## Hyperparameters tuning
To optimize hyperparameters, just set `optimizeit: 1,` and model parameters limits. It is commented in it's docstrings how to use it. It's not grid bruteforce. It is a heuristic method based on halving interval is used, but still it can be time-consuming. It is recommended only to tune parameters worth of it. Or tune it by parts.
## GUI
It is possible to use basic GUI. But only with CSV data source. Just run `gui_start.py` if you have downloaded software or call `predictit.gui_start.run_gui()` if you are importing via PyPI. Screenshot of such a GUI
<p align="center">
<img src="docs/source/_static/img/GUI.png" width="620" alt="GUI"/>
</p>
Better GUI with fully customizable settings will be shipped next year, hopefully.
## Categorical embeddings
It is also possible to use string values in predictions. You can choose config values 'embedding' 'label' and every unique string will be assigned unique number, 'one-hot' create new column for every unique string (can be time-consuming).
## Feature engineering
For feature derivation, you can use difference transformations, first and second order differences, multiplications of columns, rolling mean, rolling standard deviations and also rolling fourier transform.
Feature selection is under development right now :[
## Data preprocessing, plotting and other Functions
You can use any library functions separately for your needs of course. mydatapreprocessing, mylogging and mypythontools are my other projects, which are used heavily. Example is here
```python
import mydatapreprocessing as mdp
from mypythontools.plots import plot
from predictit.analyze import analyze_column
data = "https://blockchain.info/unconfirmed-transactions?format=json"
# Load data from file or URL
data_loaded = mdp.load_data.load_data(data, request_datatype_suffix=".json", predicted_table='txs', data_orientation="index")
# Transform various data into defined format - pandas dataframe - convert to numeric if possible, keep
# only numeric data and resample ifg configured.
data_consolidated = mdp.preprocessing.data_consolidation(
data_loaded, predicted_column="weight", remove_nans_threshold=0.9, remove_nans_or_replace='interpolate')
# Predicted column is on index 0 after consolidation)
analyze_column(data_consolidated.iloc[:, 0])
# Preprocess data. It return preprocessed data, but also last undifferenced value and scaler for inverse
# transformation, so unpack it with _
data_preprocessed, _, _ = mdp.preprocessing.preprocess_data(data_consolidated, remove_outliers=True, smoothit=False,
correlation_threshold=False, data_transform=False, standardizeit='standardize')
# Plot inserted data
plot(data_preprocessed)
```
## Using just one model apart main function
Main benefit is performance boost. You can have code under the much simpler (much less code), but no features from configuration available.
```python
import mydatapreprocessing as mdp
data = mdp.generate_data.sin(1000)
test = data[-7:]
data = data[: -7]
data = mdp.preprocessing.data_consolidation(data)
# First tuple, because some models use raw data - one argument, e.g. [1, 2, 3...]
(X, y), x_input, _ = mdp.create_model_inputs.create_inputs(data.values, 'batch', input_type_params={'n_steps_in': 6})
trained_model = predictit.models.sklearn_regression.train((X, y), model='BayesianRidge')
predictions_one_model = predictit.models.sklearn_regression.predict(x_input, trained_model, predicts=7)
predictions_one_model_error = predictit.evaluate_predictions.compare_predicted_to_test(predictions_one_model, test, error_criterion='mape') # , plot=1
```
## Example of using library as a pro with deeper editing config
```python
config.update(
{
"data": r"https://raw.githubusercontent.com/jbrownlee/Datasets/master/daily-min-temperatures.csv", # Full CSV path with suffix
"predicted_column": "Temp", # Column name that we want to predict
"datalength": 200,
"predicts": 7, # Number of predicted values - 7 by default
"repeatit": 50, # Repeat calculation times on shifted data to evaluate error criterion
"other_columns": False, # Whether use other columns or not
# Chose models that will be computed - remove if you want to use all the models
"used_models": [
"AR",
"ARIMA",
"LNU",
"Conjugate gradient",
"Sklearn regression",
"Bayes ridge regression one column one step",
"Decision tree regression",
],
# Define parameters of models
"models_parameters": {
"AR": {
"used_model": "ar",
"method": "cmle",
"trend": "nc",
"solver": "lbfgs",
},
"ARIMA": {
"used_model": "arima",
"p": 6,
"d": 0,
"q": 0,
},
"LNU": {
"learning_rate": "infer",
"epochs": 10,
"w_predict": 0,
"normalize_learning_rate": False,
},
"Conjugate gradient": {"epochs": 200},
"Bayes ridge regression": {
"model": "BayesianRidge",
"n_iter": 300,
"alpha_1": 1.0e-6,
"alpha_2": 1.0e-6,
"lambda_1": 1.0e-6,
"lambda_2": 1.0e-6,
},
},
}
)
predictions_configured = predictit.predict()
```
## Performance - How to scale
Time series prediction is very different from image recognition and more data doesn't necessarily mean better prediction. If you're issuing performance problems, try fast preset (turn off optimizations, make less recurrent values, choose only few models, threshold datalength etc.) you can edit preset if you need. If you still have performance troubles, and you have too much data, use resampling and select only valuable columns - for example correlation_threshold and do not derive extra columns. If you are interested mostly in predictions and not in the plot, turn the plot off.
## Future work
It's planned to do real GUI and possibility to serve web app as well as desktop. Scalability can be solved two ways. First is incremental learning (not every model supports today). Second is virtualisation (processes running in cluster separately).
There is very big todo list on root called `TODO.md.`
## For developers
Any help from other developers very appreciated... :D
Don't be shy to create Issue, merge request or text on <malachovd@seznam.cz>
%package help
Summary: Development documents and examples for predictit
Provides: python3-predictit-doc
%description help
# predictit
[](https://mybinder.org/v2/gh/Malachov/predictit/HEAD?filepath=demo.ipynb) [](https://pypi.python.org/pypi/predictit/) [](https://badge.fury.io/py/predictit) [](https://pepy.tech/project/predictit) [](https://lgtm.com/projects/g/Malachov/predictit/context:python) [](https://predictit.readthedocs.io/en/master/?badge=master) [](https://opensource.org/licenses/MIT) [](https://codecov.io/gh/Malachov/predictit)
Library/framework for making time series predictions. Choose the data, choose the models (ARIMA, regressions, LSTM...) from libraries like statsmodels, scikit-learn, tensorflow. Do the setup (it's not necessary of course, you can use some preset) and predict.
Library contain model Hyperparameter optimization as well as option variable optimization. That means, that library can find optimal preprocessing (smoothing, dropping non correlated columns, standardization) and on top of that it can find optimal hyperparameters such as number of neuron layers.
## Output
Most common output is plotly interactive graph and object with results array, results with history etc...
<p align="center">
<img src="docs/source/_static/img/output_example.png" width="620" alt="Plot of results"/>
</p>
<p align="center">
<img src="docs/source/_static/img/table_of_results.png" width="620" alt="Table of results"/>
</p>
## Links
[Repo on github](https://github.com/Malachov/predictit)
[Official readthedocs documentation](https://predictit.readthedocs.io)
## Installation
Python >=3.6 (Python 2 is not supported).
Install just with
```console
pip install predictit
```
Sometimes you can have issues with installing some libraries from requirements (e.g. numpy because not BLAS / LAPACK). There are also two libraries - Tensorflow and pyodbc not in requirements, because not necessary, but troublesome. If library not installed with pip, check which library don't work, install manually with stackoverflow and repeat...
There are some libraries that not every user will be using (e.g. Tensorflow or libraries for some data inputs). If you want to be sure to have all libraries, you can download `requirements_advanced.txt` and then install advanced requirements with `pip install -r requirements_advanced.txt`.
Library was developed during 2020 and structure and even API (configuration) changed a lot. From version 2.0 it's considered to be stable and following semantic versioning.
## How to
Software can be used as a python library or with command line arguments or as normal python script. Main function is `predict` in `main.py` script. There is also `predict_multiple_columns` function if you want to predict more at once (columns or time frequencies) and also `compare_models` function that tell you which models are best. It evaluates error criterion on out of sample test data instead of predict (which use as much data as possible). Some models, for example decision trees just assign input from learning set, so error in predict is 0, in compare_models its accurate. So first is optimal to use `compare_models`, find best models and then use it in predict.
Try live demo - playground on [binder](https://mybinder.org/v2/gh/Malachov/predictit/HEAD?filepath=demo.ipynb)
### Config
Import libraries
<!--phmdoctest-setup-->
```python
import predictit
import numpy as np
import pandas as pd
from predictit import config
```
and type `config.`, then, if not automatically, use ctrl + spacebar to see all subcategories and in subcategories, you can see description in the docstrings for all the configurable values.
<p align="center">
<img src="docs/source/_static/img/config_intellisense.png" width="620" alt="GUI"/>
</p>
You can edit config in two ways
1) As object attributes
You can use subcategories like `general`, `data_input`, `output`
```python
config.data_input.data = 'https://raw.githubusercontent.com/jbrownlee/Datasets/master/daily-min-temperatures.csv'
```
You can also use config instance directly for all the attributes and omit the subcategories (though without intellisense help).
```python
config.datetime_column = 'Date' # Will be used for resampling and result plot description
config.freq = "D" # One day - one value resampling
```
2) Multiple parameters at once with dictionary and update function
```python
config.update({
'datalength': 300, # Used datalength
'predicts': 14, # Number of predicted values
'default_n_steps_in': 12 # Value of recursive inputs in model (do not use too high - slower and worse predictions)
})
# After if you setup prediction as needed, it's simple
predictions = predictit.predict()
```
If you need create more configurations and don't want to override its values, you can create multiple instances, but you need to insert this new config as function parameter
```python
other_config = config.copy() # or predictit.configuration.Config()
other_config.predicts = 30 # This will not affect config for other examples
predictions_3 = predictit.predict(config=other_config)
```
### Simple example of using predictit as a python library and function arguments
Although there are many config variables, defaults should be enough.
```python
predictions_1 = predictit.predict(data=np.random.randn(100, 2), predicted_column=1, predicts=3)
```
There are only two positional arguments `data` and `predicted_column`(because, there is more than a hundred configurable values). So you can use also
```python
my_data = pd.DataFrame(np.random.randn(100, 2), columns=['a', 'b'])
predictions_1_positional = predictit.predict(my_data, 'b')
```
### Simple example of using `main.py` as a script
Open `configuration.py` (only script you need to edit (very simple)), do the setup. Mainly used_function and data or data_source and path. Then just run `main.py`.
### Simple example of using command line arguments
Run code below in terminal in predictit repository folder.
Use `python predictit/main.py --help` for more parameters' info.
```console
python predictit/main.py --used_function predict --data 'https://raw.githubusercontent.com/jbrownlee/Datasets/master/daily-min-temperatures.csv' --predicted_column 'Temp'
```
### Example of compare_models function
You can compare it on same data in various parts or on different data (check configuration on how to insert dictionary with data names)
```python
my_data_array = np.random.randn(200, 2) # Define your data here
config.update({
'data_all': {'First part': (my_data_array[:100], 0), 'Second part': (my_data_array[100:], 1)},
'predicted_column': 0
})
compared_models = predictit.compare_models()
```
### Example of predict_multiple function
```python
config.data = np.random.randn(120, 3)
config.predicted_columns = ['*'] # Define list of columns or '*' for predicting all of the numeric columns
config.used_models = ['Conjugate gradient', 'Decision tree regression'] # Use just few models to be faster
multiple_columns_prediction = predictit.predict_multiple_columns()
```
### Example of config variable optimization
```python
config.update({
'data': "https://raw.githubusercontent.com/jbrownlee/Datasets/master/daily-min-temperatures.csv",
'predicted_column': 'Temp',
'datalength': 120,
'optimization': True,
'optimization_variable': 'default_n_steps_in',
'optimization_values': [4, 6, 8],
'plot_all_optimized_models': False,
'print_table': 'detailed', # Print detailed table
'print_result_details': True,
'used_models': ['AR', 'Sklearn regression']
})
predictions_optimized_config = predictit.predict()
```
## Hyperparameters tuning
To optimize hyperparameters, just set `optimizeit: 1,` and model parameters limits. It is commented in it's docstrings how to use it. It's not grid bruteforce. It is a heuristic method based on halving interval is used, but still it can be time-consuming. It is recommended only to tune parameters worth of it. Or tune it by parts.
## GUI
It is possible to use basic GUI. But only with CSV data source. Just run `gui_start.py` if you have downloaded software or call `predictit.gui_start.run_gui()` if you are importing via PyPI. Screenshot of such a GUI
<p align="center">
<img src="docs/source/_static/img/GUI.png" width="620" alt="GUI"/>
</p>
Better GUI with fully customizable settings will be shipped next year, hopefully.
## Categorical embeddings
It is also possible to use string values in predictions. You can choose config values 'embedding' 'label' and every unique string will be assigned unique number, 'one-hot' create new column for every unique string (can be time-consuming).
## Feature engineering
For feature derivation, you can use difference transformations, first and second order differences, multiplications of columns, rolling mean, rolling standard deviations and also rolling fourier transform.
Feature selection is under development right now :[
## Data preprocessing, plotting and other Functions
You can use any library functions separately for your needs of course. mydatapreprocessing, mylogging and mypythontools are my other projects, which are used heavily. Example is here
```python
import mydatapreprocessing as mdp
from mypythontools.plots import plot
from predictit.analyze import analyze_column
data = "https://blockchain.info/unconfirmed-transactions?format=json"
# Load data from file or URL
data_loaded = mdp.load_data.load_data(data, request_datatype_suffix=".json", predicted_table='txs', data_orientation="index")
# Transform various data into defined format - pandas dataframe - convert to numeric if possible, keep
# only numeric data and resample ifg configured.
data_consolidated = mdp.preprocessing.data_consolidation(
data_loaded, predicted_column="weight", remove_nans_threshold=0.9, remove_nans_or_replace='interpolate')
# Predicted column is on index 0 after consolidation)
analyze_column(data_consolidated.iloc[:, 0])
# Preprocess data. It return preprocessed data, but also last undifferenced value and scaler for inverse
# transformation, so unpack it with _
data_preprocessed, _, _ = mdp.preprocessing.preprocess_data(data_consolidated, remove_outliers=True, smoothit=False,
correlation_threshold=False, data_transform=False, standardizeit='standardize')
# Plot inserted data
plot(data_preprocessed)
```
## Using just one model apart main function
Main benefit is performance boost. You can have code under the much simpler (much less code), but no features from configuration available.
```python
import mydatapreprocessing as mdp
data = mdp.generate_data.sin(1000)
test = data[-7:]
data = data[: -7]
data = mdp.preprocessing.data_consolidation(data)
# First tuple, because some models use raw data - one argument, e.g. [1, 2, 3...]
(X, y), x_input, _ = mdp.create_model_inputs.create_inputs(data.values, 'batch', input_type_params={'n_steps_in': 6})
trained_model = predictit.models.sklearn_regression.train((X, y), model='BayesianRidge')
predictions_one_model = predictit.models.sklearn_regression.predict(x_input, trained_model, predicts=7)
predictions_one_model_error = predictit.evaluate_predictions.compare_predicted_to_test(predictions_one_model, test, error_criterion='mape') # , plot=1
```
## Example of using library as a pro with deeper editing config
```python
config.update(
{
"data": r"https://raw.githubusercontent.com/jbrownlee/Datasets/master/daily-min-temperatures.csv", # Full CSV path with suffix
"predicted_column": "Temp", # Column name that we want to predict
"datalength": 200,
"predicts": 7, # Number of predicted values - 7 by default
"repeatit": 50, # Repeat calculation times on shifted data to evaluate error criterion
"other_columns": False, # Whether use other columns or not
# Chose models that will be computed - remove if you want to use all the models
"used_models": [
"AR",
"ARIMA",
"LNU",
"Conjugate gradient",
"Sklearn regression",
"Bayes ridge regression one column one step",
"Decision tree regression",
],
# Define parameters of models
"models_parameters": {
"AR": {
"used_model": "ar",
"method": "cmle",
"trend": "nc",
"solver": "lbfgs",
},
"ARIMA": {
"used_model": "arima",
"p": 6,
"d": 0,
"q": 0,
},
"LNU": {
"learning_rate": "infer",
"epochs": 10,
"w_predict": 0,
"normalize_learning_rate": False,
},
"Conjugate gradient": {"epochs": 200},
"Bayes ridge regression": {
"model": "BayesianRidge",
"n_iter": 300,
"alpha_1": 1.0e-6,
"alpha_2": 1.0e-6,
"lambda_1": 1.0e-6,
"lambda_2": 1.0e-6,
},
},
}
)
predictions_configured = predictit.predict()
```
## Performance - How to scale
Time series prediction is very different from image recognition and more data doesn't necessarily mean better prediction. If you're issuing performance problems, try fast preset (turn off optimizations, make less recurrent values, choose only few models, threshold datalength etc.) you can edit preset if you need. If you still have performance troubles, and you have too much data, use resampling and select only valuable columns - for example correlation_threshold and do not derive extra columns. If you are interested mostly in predictions and not in the plot, turn the plot off.
## Future work
It's planned to do real GUI and possibility to serve web app as well as desktop. Scalability can be solved two ways. First is incremental learning (not every model supports today). Second is virtualisation (processes running in cluster separately).
There is very big todo list on root called `TODO.md.`
## For developers
Any help from other developers very appreciated... :D
Don't be shy to create Issue, merge request or text on <malachovd@seznam.cz>
%prep
%autosetup -n predictit-2.0.7
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "\"/%h/%f.gz\"\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-predictit -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Thu Jun 08 2023 Python_Bot <Python_Bot@openeuler.org> - 2.0.7-1
- Package Spec generated
|