diff options
author | CoprDistGit <infra@openeuler.org> | 2023-06-20 04:20:36 +0000 |
---|---|---|
committer | CoprDistGit <infra@openeuler.org> | 2023-06-20 04:20:36 +0000 |
commit | 38685706232c47c5615c912cb89bfb09e2b5509a (patch) | |
tree | 0788744ca4cd46df6627ddd9707e5293406cec56 /python-py-casper.spec | |
parent | a05379bc2c8bebbf59c24db40be7ea214f352106 (diff) |
automatic import of python-py-casperopeneuler20.03
Diffstat (limited to 'python-py-casper.spec')
-rw-r--r-- | python-py-casper.spec | 299 |
1 files changed, 299 insertions, 0 deletions
diff --git a/python-py-casper.spec b/python-py-casper.spec new file mode 100644 index 0000000..44efd7d --- /dev/null +++ b/python-py-casper.spec @@ -0,0 +1,299 @@ +%global _empty_manifest_terminate_build 0 +Name: python-py-casper +Version: 1.1.0 +Release: 1 +Summary: A python package to predict halo concentration and shape parameter. +License: MIT License +URL: https://github.com/Shaun-T-Brown/CASPER +Source0: https://mirrors.aliyun.com/pypi/web/packages/59/71/6672dea1706cf357a0a10114050324d9f7619226b8af59802c48cc46b65f/py-casper-1.1.0.tar.gz +BuildArch: noarch + +Requires: python3-numpy +Requires: python3-scipy + +%description +# CASPER (Concentration And Shape Parameter Estimation Routine) + +Casper is a python package aimed at predicting the concentration and shape parameter of dark matter haloes as a function of mass and redshift for a specified cosmology. + +### Requirements + +The module requires the following: + +- python3.6 or higher + +### Installation + +The easiest way to install Casper is using pip: + +``` +pip install py-casper [--user] +``` + +The --user flag may be required if you do not have root privileges. Alternatively for a more involved 'installation' that is also editable you can simply clone the github repository: + +``` +git clone https://github.com/Shaun-T-Brown/CASPER.git +``` + +and add the folder (specifically src) to your python path. This method will also require scipy and numpy to be installed. Using pip will automatically install all dependencies. + +To use the main functionality of the package (i.e. to predict c and alpha) you will need to be able to generate the linear power spectra for a given cosmology. In principle this can be done using any reliable method. However, we recommend installing and using [CAMB](https://camb.readthedocs.io/en/latest/). + + + +### Usage + +The best way to demonstrate how Casper can be used is with a few examples. An interactive jupyter notebook with all necessary modules available can be found on [Binder](https://mybinder.org/v2/gh/Shaun-T-Brown/CASPER-example.git/HEAD?filepath=.%2Fexample_script.ipynb). A static version of the same notebook can be found at the following github [repository](https://github.com/Shaun-T-Brown/CASPER-example.git), specifically in the file *example_script.ipynb*. + +The functionality of the package is relatively straightforward and is essentially a collection of useful functions centered around the density profiles of dark matter haloes. Basic documentation can be generated using *pydoc*. + + +``` +import casper + +help(casper) +``` + + +### Acknowledging the code + +If the results of this code, particularly the predictions for halo concentration and the shape parameter, are used in any published work then please acknowledge and cite the original [paper](https://arxiv.org/abs/2110.01632) appropriately. + +The following bibtex entry may be used: + +``` +@ARTICLE{2022MNRAS.509.5685B, + author = {{Brown}, Shaun T. and {McCarthy}, Ian G. and {Stafford}, Sam G. and {Font}, Andreea S.}, + title = "{Towards a universal model for the density profiles of dark matter haloes}", + journal = {\mnras}, + keywords = {methods: numerical, cosmology: theory, dark matter, Astrophysics - Cosmology and Nongalactic Astrophysics, Astrophysics - Astrophysics of Galaxies}, + year = 2022, + month = feb, + volume = {509}, + number = {4}, + pages = {5685-5701}, + doi = {10.1093/mnras/stab3394}, +archivePrefix = {arXiv}, + eprint = {2110.01632}, + primaryClass = {astro-ph.CO}, + adsurl = {https://ui.adsabs.harvard.edu/abs/2022MNRAS.509.5685B}, + adsnote = {Provided by the SAO/NASA Astrophysics Data System} +} +``` + +For any questions and enquires please contact me via email at *S.T.Brown@2018.ljmu.ac.uk* + + + + + + +%package -n python3-py-casper +Summary: A python package to predict halo concentration and shape parameter. +Provides: python-py-casper +BuildRequires: python3-devel +BuildRequires: python3-setuptools +BuildRequires: python3-pip +%description -n python3-py-casper +# CASPER (Concentration And Shape Parameter Estimation Routine) + +Casper is a python package aimed at predicting the concentration and shape parameter of dark matter haloes as a function of mass and redshift for a specified cosmology. + +### Requirements + +The module requires the following: + +- python3.6 or higher + +### Installation + +The easiest way to install Casper is using pip: + +``` +pip install py-casper [--user] +``` + +The --user flag may be required if you do not have root privileges. Alternatively for a more involved 'installation' that is also editable you can simply clone the github repository: + +``` +git clone https://github.com/Shaun-T-Brown/CASPER.git +``` + +and add the folder (specifically src) to your python path. This method will also require scipy and numpy to be installed. Using pip will automatically install all dependencies. + +To use the main functionality of the package (i.e. to predict c and alpha) you will need to be able to generate the linear power spectra for a given cosmology. In principle this can be done using any reliable method. However, we recommend installing and using [CAMB](https://camb.readthedocs.io/en/latest/). + + + +### Usage + +The best way to demonstrate how Casper can be used is with a few examples. An interactive jupyter notebook with all necessary modules available can be found on [Binder](https://mybinder.org/v2/gh/Shaun-T-Brown/CASPER-example.git/HEAD?filepath=.%2Fexample_script.ipynb). A static version of the same notebook can be found at the following github [repository](https://github.com/Shaun-T-Brown/CASPER-example.git), specifically in the file *example_script.ipynb*. + +The functionality of the package is relatively straightforward and is essentially a collection of useful functions centered around the density profiles of dark matter haloes. Basic documentation can be generated using *pydoc*. + + +``` +import casper + +help(casper) +``` + + +### Acknowledging the code + +If the results of this code, particularly the predictions for halo concentration and the shape parameter, are used in any published work then please acknowledge and cite the original [paper](https://arxiv.org/abs/2110.01632) appropriately. + +The following bibtex entry may be used: + +``` +@ARTICLE{2022MNRAS.509.5685B, + author = {{Brown}, Shaun T. and {McCarthy}, Ian G. and {Stafford}, Sam G. and {Font}, Andreea S.}, + title = "{Towards a universal model for the density profiles of dark matter haloes}", + journal = {\mnras}, + keywords = {methods: numerical, cosmology: theory, dark matter, Astrophysics - Cosmology and Nongalactic Astrophysics, Astrophysics - Astrophysics of Galaxies}, + year = 2022, + month = feb, + volume = {509}, + number = {4}, + pages = {5685-5701}, + doi = {10.1093/mnras/stab3394}, +archivePrefix = {arXiv}, + eprint = {2110.01632}, + primaryClass = {astro-ph.CO}, + adsurl = {https://ui.adsabs.harvard.edu/abs/2022MNRAS.509.5685B}, + adsnote = {Provided by the SAO/NASA Astrophysics Data System} +} +``` + +For any questions and enquires please contact me via email at *S.T.Brown@2018.ljmu.ac.uk* + + + + + + +%package help +Summary: Development documents and examples for py-casper +Provides: python3-py-casper-doc +%description help +# CASPER (Concentration And Shape Parameter Estimation Routine) + +Casper is a python package aimed at predicting the concentration and shape parameter of dark matter haloes as a function of mass and redshift for a specified cosmology. + +### Requirements + +The module requires the following: + +- python3.6 or higher + +### Installation + +The easiest way to install Casper is using pip: + +``` +pip install py-casper [--user] +``` + +The --user flag may be required if you do not have root privileges. Alternatively for a more involved 'installation' that is also editable you can simply clone the github repository: + +``` +git clone https://github.com/Shaun-T-Brown/CASPER.git +``` + +and add the folder (specifically src) to your python path. This method will also require scipy and numpy to be installed. Using pip will automatically install all dependencies. + +To use the main functionality of the package (i.e. to predict c and alpha) you will need to be able to generate the linear power spectra for a given cosmology. In principle this can be done using any reliable method. However, we recommend installing and using [CAMB](https://camb.readthedocs.io/en/latest/). + + + +### Usage + +The best way to demonstrate how Casper can be used is with a few examples. An interactive jupyter notebook with all necessary modules available can be found on [Binder](https://mybinder.org/v2/gh/Shaun-T-Brown/CASPER-example.git/HEAD?filepath=.%2Fexample_script.ipynb). A static version of the same notebook can be found at the following github [repository](https://github.com/Shaun-T-Brown/CASPER-example.git), specifically in the file *example_script.ipynb*. + +The functionality of the package is relatively straightforward and is essentially a collection of useful functions centered around the density profiles of dark matter haloes. Basic documentation can be generated using *pydoc*. + + +``` +import casper + +help(casper) +``` + + +### Acknowledging the code + +If the results of this code, particularly the predictions for halo concentration and the shape parameter, are used in any published work then please acknowledge and cite the original [paper](https://arxiv.org/abs/2110.01632) appropriately. + +The following bibtex entry may be used: + +``` +@ARTICLE{2022MNRAS.509.5685B, + author = {{Brown}, Shaun T. and {McCarthy}, Ian G. and {Stafford}, Sam G. and {Font}, Andreea S.}, + title = "{Towards a universal model for the density profiles of dark matter haloes}", + journal = {\mnras}, + keywords = {methods: numerical, cosmology: theory, dark matter, Astrophysics - Cosmology and Nongalactic Astrophysics, Astrophysics - Astrophysics of Galaxies}, + year = 2022, + month = feb, + volume = {509}, + number = {4}, + pages = {5685-5701}, + doi = {10.1093/mnras/stab3394}, +archivePrefix = {arXiv}, + eprint = {2110.01632}, + primaryClass = {astro-ph.CO}, + adsurl = {https://ui.adsabs.harvard.edu/abs/2022MNRAS.509.5685B}, + adsnote = {Provided by the SAO/NASA Astrophysics Data System} +} +``` + +For any questions and enquires please contact me via email at *S.T.Brown@2018.ljmu.ac.uk* + + + + + + +%prep +%autosetup -n py-casper-1.1.0 + +%build +%py3_build + +%install +%py3_install +install -d -m755 %{buildroot}/%{_pkgdocdir} +if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi +if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi +if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi +if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi +pushd %{buildroot} +if [ -d usr/lib ]; then + find usr/lib -type f -printf "\"/%h/%f\"\n" >> filelist.lst +fi +if [ -d usr/lib64 ]; then + find usr/lib64 -type f -printf "\"/%h/%f\"\n" >> filelist.lst +fi +if [ -d usr/bin ]; then + find usr/bin -type f -printf "\"/%h/%f\"\n" >> filelist.lst +fi +if [ -d usr/sbin ]; then + find usr/sbin -type f -printf "\"/%h/%f\"\n" >> filelist.lst +fi +touch doclist.lst +if [ -d usr/share/man ]; then + find usr/share/man -type f -printf "\"/%h/%f.gz\"\n" >> doclist.lst +fi +popd +mv %{buildroot}/filelist.lst . +mv %{buildroot}/doclist.lst . + +%files -n python3-py-casper -f filelist.lst +%dir %{python3_sitelib}/* + +%files help -f doclist.lst +%{_docdir}/* + +%changelog +* Tue Jun 20 2023 Python_Bot <Python_Bot@openeuler.org> - 1.1.0-1 +- Package Spec generated |