summaryrefslogtreecommitdiff
path: root/python-py-casper.spec
blob: 44efd7d5d6357d95e8416278dc90d5d85defa76e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
%global _empty_manifest_terminate_build 0
Name:		python-py-casper
Version:	1.1.0
Release:	1
Summary:	A python package to predict halo concentration and shape parameter.
License:	MIT License
URL:		https://github.com/Shaun-T-Brown/CASPER
Source0:	https://mirrors.aliyun.com/pypi/web/packages/59/71/6672dea1706cf357a0a10114050324d9f7619226b8af59802c48cc46b65f/py-casper-1.1.0.tar.gz
BuildArch:	noarch

Requires:	python3-numpy
Requires:	python3-scipy

%description
# CASPER (Concentration And Shape Parameter Estimation Routine)

Casper is a python package aimed at predicting the concentration and shape parameter of dark matter haloes as a function of mass and redshift for a specified cosmology.

### Requirements

The module requires the following:

- python3.6 or higher

### Installation

The easiest way to install Casper is using pip:

```
pip install py-casper [--user]
```

The --user flag may be required if you do not have root privileges. Alternatively for a more involved 'installation' that is also editable you can simply  clone the github repository:

```
git clone https://github.com/Shaun-T-Brown/CASPER.git
```

and add the folder (specifically src) to your python path. This method will also require scipy and numpy to be installed. Using pip will automatically install all dependencies.

To use the main functionality of the package (i.e. to predict c and alpha) you will need to be able to generate the linear power spectra for a given cosmology. In principle this can be done using any reliable method. However, we recommend installing and using [CAMB](https://camb.readthedocs.io/en/latest/).



### Usage

The best way to demonstrate how Casper can be used is with a few examples. An interactive jupyter notebook with all necessary modules available can be found on [Binder](https://mybinder.org/v2/gh/Shaun-T-Brown/CASPER-example.git/HEAD?filepath=.%2Fexample_script.ipynb). A static version of the same notebook can be found at the following github [repository](https://github.com/Shaun-T-Brown/CASPER-example.git), specifically in the file *example_script.ipynb*.

The functionality of the package is relatively straightforward and is essentially a collection of useful functions centered around the density profiles of dark matter haloes. Basic documentation can be generated using *pydoc*.


```
import casper

help(casper)
```


### Acknowledging the code

If the results of this code, particularly the predictions for halo concentration and the shape parameter, are used in any published work then please acknowledge and cite the original [paper](https://arxiv.org/abs/2110.01632) appropriately.

The following bibtex entry may be used:

```
@ARTICLE{2022MNRAS.509.5685B,
       author = {{Brown}, Shaun T. and {McCarthy}, Ian G. and {Stafford}, Sam G. and {Font}, Andreea S.},
        title = "{Towards a universal model for the density profiles of dark matter haloes}",
      journal = {\mnras},
     keywords = {methods: numerical, cosmology: theory, dark matter, Astrophysics - Cosmology and Nongalactic Astrophysics, Astrophysics - Astrophysics of Galaxies},
         year = 2022,
        month = feb,
       volume = {509},
       number = {4},
        pages = {5685-5701},
          doi = {10.1093/mnras/stab3394},
archivePrefix = {arXiv},
       eprint = {2110.01632},
 primaryClass = {astro-ph.CO},
       adsurl = {https://ui.adsabs.harvard.edu/abs/2022MNRAS.509.5685B},
      adsnote = {Provided by the SAO/NASA Astrophysics Data System}
}
```

For any questions and enquires please contact me via email at *S.T.Brown@2018.ljmu.ac.uk*






%package -n python3-py-casper
Summary:	A python package to predict halo concentration and shape parameter.
Provides:	python-py-casper
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-py-casper
# CASPER (Concentration And Shape Parameter Estimation Routine)

Casper is a python package aimed at predicting the concentration and shape parameter of dark matter haloes as a function of mass and redshift for a specified cosmology.

### Requirements

The module requires the following:

- python3.6 or higher

### Installation

The easiest way to install Casper is using pip:

```
pip install py-casper [--user]
```

The --user flag may be required if you do not have root privileges. Alternatively for a more involved 'installation' that is also editable you can simply  clone the github repository:

```
git clone https://github.com/Shaun-T-Brown/CASPER.git
```

and add the folder (specifically src) to your python path. This method will also require scipy and numpy to be installed. Using pip will automatically install all dependencies.

To use the main functionality of the package (i.e. to predict c and alpha) you will need to be able to generate the linear power spectra for a given cosmology. In principle this can be done using any reliable method. However, we recommend installing and using [CAMB](https://camb.readthedocs.io/en/latest/).



### Usage

The best way to demonstrate how Casper can be used is with a few examples. An interactive jupyter notebook with all necessary modules available can be found on [Binder](https://mybinder.org/v2/gh/Shaun-T-Brown/CASPER-example.git/HEAD?filepath=.%2Fexample_script.ipynb). A static version of the same notebook can be found at the following github [repository](https://github.com/Shaun-T-Brown/CASPER-example.git), specifically in the file *example_script.ipynb*.

The functionality of the package is relatively straightforward and is essentially a collection of useful functions centered around the density profiles of dark matter haloes. Basic documentation can be generated using *pydoc*.


```
import casper

help(casper)
```


### Acknowledging the code

If the results of this code, particularly the predictions for halo concentration and the shape parameter, are used in any published work then please acknowledge and cite the original [paper](https://arxiv.org/abs/2110.01632) appropriately.

The following bibtex entry may be used:

```
@ARTICLE{2022MNRAS.509.5685B,
       author = {{Brown}, Shaun T. and {McCarthy}, Ian G. and {Stafford}, Sam G. and {Font}, Andreea S.},
        title = "{Towards a universal model for the density profiles of dark matter haloes}",
      journal = {\mnras},
     keywords = {methods: numerical, cosmology: theory, dark matter, Astrophysics - Cosmology and Nongalactic Astrophysics, Astrophysics - Astrophysics of Galaxies},
         year = 2022,
        month = feb,
       volume = {509},
       number = {4},
        pages = {5685-5701},
          doi = {10.1093/mnras/stab3394},
archivePrefix = {arXiv},
       eprint = {2110.01632},
 primaryClass = {astro-ph.CO},
       adsurl = {https://ui.adsabs.harvard.edu/abs/2022MNRAS.509.5685B},
      adsnote = {Provided by the SAO/NASA Astrophysics Data System}
}
```

For any questions and enquires please contact me via email at *S.T.Brown@2018.ljmu.ac.uk*






%package help
Summary:	Development documents and examples for py-casper
Provides:	python3-py-casper-doc
%description help
# CASPER (Concentration And Shape Parameter Estimation Routine)

Casper is a python package aimed at predicting the concentration and shape parameter of dark matter haloes as a function of mass and redshift for a specified cosmology.

### Requirements

The module requires the following:

- python3.6 or higher

### Installation

The easiest way to install Casper is using pip:

```
pip install py-casper [--user]
```

The --user flag may be required if you do not have root privileges. Alternatively for a more involved 'installation' that is also editable you can simply  clone the github repository:

```
git clone https://github.com/Shaun-T-Brown/CASPER.git
```

and add the folder (specifically src) to your python path. This method will also require scipy and numpy to be installed. Using pip will automatically install all dependencies.

To use the main functionality of the package (i.e. to predict c and alpha) you will need to be able to generate the linear power spectra for a given cosmology. In principle this can be done using any reliable method. However, we recommend installing and using [CAMB](https://camb.readthedocs.io/en/latest/).



### Usage

The best way to demonstrate how Casper can be used is with a few examples. An interactive jupyter notebook with all necessary modules available can be found on [Binder](https://mybinder.org/v2/gh/Shaun-T-Brown/CASPER-example.git/HEAD?filepath=.%2Fexample_script.ipynb). A static version of the same notebook can be found at the following github [repository](https://github.com/Shaun-T-Brown/CASPER-example.git), specifically in the file *example_script.ipynb*.

The functionality of the package is relatively straightforward and is essentially a collection of useful functions centered around the density profiles of dark matter haloes. Basic documentation can be generated using *pydoc*.


```
import casper

help(casper)
```


### Acknowledging the code

If the results of this code, particularly the predictions for halo concentration and the shape parameter, are used in any published work then please acknowledge and cite the original [paper](https://arxiv.org/abs/2110.01632) appropriately.

The following bibtex entry may be used:

```
@ARTICLE{2022MNRAS.509.5685B,
       author = {{Brown}, Shaun T. and {McCarthy}, Ian G. and {Stafford}, Sam G. and {Font}, Andreea S.},
        title = "{Towards a universal model for the density profiles of dark matter haloes}",
      journal = {\mnras},
     keywords = {methods: numerical, cosmology: theory, dark matter, Astrophysics - Cosmology and Nongalactic Astrophysics, Astrophysics - Astrophysics of Galaxies},
         year = 2022,
        month = feb,
       volume = {509},
       number = {4},
        pages = {5685-5701},
          doi = {10.1093/mnras/stab3394},
archivePrefix = {arXiv},
       eprint = {2110.01632},
 primaryClass = {astro-ph.CO},
       adsurl = {https://ui.adsabs.harvard.edu/abs/2022MNRAS.509.5685B},
      adsnote = {Provided by the SAO/NASA Astrophysics Data System}
}
```

For any questions and enquires please contact me via email at *S.T.Brown@2018.ljmu.ac.uk*






%prep
%autosetup -n py-casper-1.1.0

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "\"/%h/%f.gz\"\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-py-casper -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Tue Jun 20 2023 Python_Bot <Python_Bot@openeuler.org> - 1.1.0-1
- Package Spec generated