summaryrefslogtreecommitdiff
path: root/python-py-tlsh.spec
blob: e1a190e7232ba584f5126884fbedc8399fa7a5ef (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
%global _empty_manifest_terminate_build 0
Name:		python-py-tlsh
Version:	4.7.2
Release:	1
Summary:	TLSH (C++ Python extension)
License:	Apache or BSD
URL:		https://github.com/trendmicro/tlsh
Source0:	https://mirrors.nju.edu.cn/pypi/web/packages/ba/5b/4d860cffd3e6e7afb277e159d97e11583fc3b611d22355799364dff325f1/py-tlsh-4.7.2.tar.gz
BuildArch:	noarch


%description
# TLSH - C++ extension for Python

[TLSH (Trend Micro Locality Sensitive Hash)](https://github.com/trendmicro/tlsh) is a fuzzy matching library.
Given a byte stream with a minimum length of 50 bytes
TLSH generates a hash value which can be used for similarity comparisons.
Similar objects will have similar hash values which allows for
the detection of similar objects by comparing their hash values.  Note that
the byte stream should have a sufficient amount of complexity.  For example,
a byte stream of identical bytes will not generate a hash value.

## What's new in py-tlsh 4.7.2
This Python module supercedes the python-tlsh package on PyPi.
The improvements in 4.7.2, are that we added additional functions to Python
* lvalue
* q1ratio
* q2ratio
* checksum
* bucket_value
* is_valid

The improvements 4.5.0 were:
* fixed this package so that it works on Windows
* compatibility with VirusTotal adoption of TLSH: updated to the T1 hash format with backwards compatibility for old hashes
* fixed the q3=0 divide by zero bug [issue 79](https://github.com/trendmicro/tlsh/issues/79)

## Usage

```python
import tlsh

tlsh.hash(data)
```

Note data needs to be bytes - not a string.
This is because TLSH is for binary data and binary data can contain a NULL (zero) byte.

In default mode the data must contain at least 50 bytes to generate a hash value and that
it must have a certain amount of randomness.
To get the hash value of a file, try

```python
tlsh.hash(open(file, 'rb').read())
```

Note: the open statement has opened the file in binary mode.

## Example
```python
import tlsh

h1 = tlsh.hash(data)
h2 = tlsh.hash(similar_data)
score = tlsh.diff(h1, h2)

h3 = tlsh.Tlsh()
with open('file', 'rb') as f:
    for buf in iter(lambda: f.read(512), b''):
        h3.update(buf)
    h3.final()
# this assertion is stating that the distance between a TLSH and itself must be zero
assert h3.diff(h3) == 0
score = h3.diff(h1)
```

## Extra Options

The `diffxlen` function removes the file length component of the tlsh header from the comparison.

```python
tlsh.diffxlen(h1, h2)
```

If a file with a repeating pattern is compared to a file with only a single instance of the pattern,
then the difference will be increased if the file lenght is included.
But by using the `diffxlen` function, the file length will be removed from consideration.

## Backwards Compatibility Options

If you use the "conservative" option, then the data must contain at least 256 characters.
For example,

```python
import os
tlsh.conservativehash(os.urandom(256))
```

should generate a hash, but

```python
tlsh.conservativehash(os.urandom(100))
```

will generate TNULL as it is less than 256 bytes.

If you need to generate old style hashes (without the "T1" prefix) then use

```python
tlsh.oldhash(os.urandom(100))
```


The old and conservative options may be combined:

```python
tlsh.oldconservativehash(os.urandom(500))
```

%package -n python3-py-tlsh
Summary:	TLSH (C++ Python extension)
Provides:	python-py-tlsh
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-py-tlsh
# TLSH - C++ extension for Python

[TLSH (Trend Micro Locality Sensitive Hash)](https://github.com/trendmicro/tlsh) is a fuzzy matching library.
Given a byte stream with a minimum length of 50 bytes
TLSH generates a hash value which can be used for similarity comparisons.
Similar objects will have similar hash values which allows for
the detection of similar objects by comparing their hash values.  Note that
the byte stream should have a sufficient amount of complexity.  For example,
a byte stream of identical bytes will not generate a hash value.

## What's new in py-tlsh 4.7.2
This Python module supercedes the python-tlsh package on PyPi.
The improvements in 4.7.2, are that we added additional functions to Python
* lvalue
* q1ratio
* q2ratio
* checksum
* bucket_value
* is_valid

The improvements 4.5.0 were:
* fixed this package so that it works on Windows
* compatibility with VirusTotal adoption of TLSH: updated to the T1 hash format with backwards compatibility for old hashes
* fixed the q3=0 divide by zero bug [issue 79](https://github.com/trendmicro/tlsh/issues/79)

## Usage

```python
import tlsh

tlsh.hash(data)
```

Note data needs to be bytes - not a string.
This is because TLSH is for binary data and binary data can contain a NULL (zero) byte.

In default mode the data must contain at least 50 bytes to generate a hash value and that
it must have a certain amount of randomness.
To get the hash value of a file, try

```python
tlsh.hash(open(file, 'rb').read())
```

Note: the open statement has opened the file in binary mode.

## Example
```python
import tlsh

h1 = tlsh.hash(data)
h2 = tlsh.hash(similar_data)
score = tlsh.diff(h1, h2)

h3 = tlsh.Tlsh()
with open('file', 'rb') as f:
    for buf in iter(lambda: f.read(512), b''):
        h3.update(buf)
    h3.final()
# this assertion is stating that the distance between a TLSH and itself must be zero
assert h3.diff(h3) == 0
score = h3.diff(h1)
```

## Extra Options

The `diffxlen` function removes the file length component of the tlsh header from the comparison.

```python
tlsh.diffxlen(h1, h2)
```

If a file with a repeating pattern is compared to a file with only a single instance of the pattern,
then the difference will be increased if the file lenght is included.
But by using the `diffxlen` function, the file length will be removed from consideration.

## Backwards Compatibility Options

If you use the "conservative" option, then the data must contain at least 256 characters.
For example,

```python
import os
tlsh.conservativehash(os.urandom(256))
```

should generate a hash, but

```python
tlsh.conservativehash(os.urandom(100))
```

will generate TNULL as it is less than 256 bytes.

If you need to generate old style hashes (without the "T1" prefix) then use

```python
tlsh.oldhash(os.urandom(100))
```


The old and conservative options may be combined:

```python
tlsh.oldconservativehash(os.urandom(500))
```

%package help
Summary:	Development documents and examples for py-tlsh
Provides:	python3-py-tlsh-doc
%description help
# TLSH - C++ extension for Python

[TLSH (Trend Micro Locality Sensitive Hash)](https://github.com/trendmicro/tlsh) is a fuzzy matching library.
Given a byte stream with a minimum length of 50 bytes
TLSH generates a hash value which can be used for similarity comparisons.
Similar objects will have similar hash values which allows for
the detection of similar objects by comparing their hash values.  Note that
the byte stream should have a sufficient amount of complexity.  For example,
a byte stream of identical bytes will not generate a hash value.

## What's new in py-tlsh 4.7.2
This Python module supercedes the python-tlsh package on PyPi.
The improvements in 4.7.2, are that we added additional functions to Python
* lvalue
* q1ratio
* q2ratio
* checksum
* bucket_value
* is_valid

The improvements 4.5.0 were:
* fixed this package so that it works on Windows
* compatibility with VirusTotal adoption of TLSH: updated to the T1 hash format with backwards compatibility for old hashes
* fixed the q3=0 divide by zero bug [issue 79](https://github.com/trendmicro/tlsh/issues/79)

## Usage

```python
import tlsh

tlsh.hash(data)
```

Note data needs to be bytes - not a string.
This is because TLSH is for binary data and binary data can contain a NULL (zero) byte.

In default mode the data must contain at least 50 bytes to generate a hash value and that
it must have a certain amount of randomness.
To get the hash value of a file, try

```python
tlsh.hash(open(file, 'rb').read())
```

Note: the open statement has opened the file in binary mode.

## Example
```python
import tlsh

h1 = tlsh.hash(data)
h2 = tlsh.hash(similar_data)
score = tlsh.diff(h1, h2)

h3 = tlsh.Tlsh()
with open('file', 'rb') as f:
    for buf in iter(lambda: f.read(512), b''):
        h3.update(buf)
    h3.final()
# this assertion is stating that the distance between a TLSH and itself must be zero
assert h3.diff(h3) == 0
score = h3.diff(h1)
```

## Extra Options

The `diffxlen` function removes the file length component of the tlsh header from the comparison.

```python
tlsh.diffxlen(h1, h2)
```

If a file with a repeating pattern is compared to a file with only a single instance of the pattern,
then the difference will be increased if the file lenght is included.
But by using the `diffxlen` function, the file length will be removed from consideration.

## Backwards Compatibility Options

If you use the "conservative" option, then the data must contain at least 256 characters.
For example,

```python
import os
tlsh.conservativehash(os.urandom(256))
```

should generate a hash, but

```python
tlsh.conservativehash(os.urandom(100))
```

will generate TNULL as it is less than 256 bytes.

If you need to generate old style hashes (without the "T1" prefix) then use

```python
tlsh.oldhash(os.urandom(100))
```


The old and conservative options may be combined:

```python
tlsh.oldconservativehash(os.urandom(500))
```

%prep
%autosetup -n py-tlsh-4.7.2

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-py-tlsh -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Tue Apr 25 2023 Python_Bot <Python_Bot@openeuler.org> - 4.7.2-1
- Package Spec generated