summaryrefslogtreecommitdiff
path: root/python-pyamg.spec
blob: 39656c4a8e75fd1c21f257065c3634eb8470a92e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
%global _empty_manifest_terminate_build 0
Name:		python-pyamg
Version:	5.0.0
Release:	1
Summary:	PyAMG: Algebraic Multigrid Solvers in Python
License:	MIT
URL:		https://github.com/pyamg/pyamg
Source0:	https://mirrors.nju.edu.cn/pypi/web/packages/dd/22/e8c569797fc2ffb6c5115237eeb60f48201d63792d8a829b0f997839cafa/pyamg-5.0.0.tar.gz

Requires:	python3-numpy
Requires:	python3-scipy

%description
[![CI](https://github.com/pyamg/pyamg/workflows/CI/badge.svg)](https://github.com/pyamg/pyamg/actions?query=workflow%3ACI+branch%3Amain)
[![PyPi](https://img.shields.io/pypi/pyversions/pyamg.svg?style=flat-square)](https://pypi.python.org/pypi/pyamg/)
[![codecov](https://codecov.io/gh/pyamg/pyamg/branch/main/graph/badge.svg?token=JpRo1gdALC)](https://codecov.io/gh/pyamg/pyamg)
[![DOI](https://joss.theoj.org/papers/10.21105/joss.04142/status.svg)](https://doi.org/10.21105/joss.04142)

# Installation
PyAMG requires `numpy` and `scipy`

```
pip install pyamg
```

or from source:

```
pip install .
```

(`python setup.py install` will no longer work)

or with conda (see details below)

```
conda config --add channels conda-forge
conda install pyamg
```

# Introduction

PyAMG is a library of **Algebraic Multigrid (AMG)** solvers with a convenient Python interface.

![](https://raw.githubusercontent.com/pyamg/pyamg/main/docs/logo/pyamg_logo_withtext.png)

PyAMG is currently developed and maintained by
[Luke Olson](http://lukeo.cs.illinois.edu),
[Jacob Schroder](https://www.unm.edu/~jbschroder), and
[Ben Southworth](https://arxiv.org/a/southworth_b_1.html).
The organization of the project can be found in [`organization.md`](organization.md) and
examples of use can be found in [`pyamg-examples`](https://github.com/pyamg/pyamg-examples).

**Acknowledgements:**
PyAMG was created by
[Nathan Bell](http://wnbell.com/), 
[Luke Olson](http://lukeo.cs.illinois.edu), and
[Jacob Schroder](https://www.unm.edu/~jbschroder).
Portions of the project were partially supported by the NSF under award DMS-0612448.

# Citing

If you use PyAMG in your work, please consider using the following citation:

<pre>
@article{BeOlSc2022,
  author    = {Nathan Bell and Luke N. Olson and Jacob Schroder},
  title     = {{PyAMG}: Algebraic Multigrid Solvers in Python},
  journal   = {Journal of Open Source Software},
  year      = {2022},
  publisher = {The Open Journal},
  volume    = {7},
  number    = {72},
  pages     = {4142},
  doi       = {10.21105/joss.04142},
  url       = {https://doi.org/10.21105/joss.04142},
}
</pre>

# Getting Help

- For documentation see [http://pyamg.readthedocs.io/en/latest/](http://pyamg.readthedocs.io/en/latest/).

- Create an [issue](https://github.com/pyamg/pyamg/issues).

- Look at the [Tutorial](https://github.com/pyamg/pyamg/wiki/Tutorial) or the [examples](https://github.com/pyamg/pyamg-examples) (for instance  the [0_start_here](https://github.com/pyamg/pyamg-examples/blob/main/0_start_here/demo.py) example).

- Run the unit tests (`pip install pytest`):
  - With PyAMG installed and from a non-source directory:
  ```python
  import pyamg
  pyamg.test()
  ```
  - From the PyAMG source directory and installed (e.g. with `pip install -e .`):
  ```python
  pytest .
  ```

# What is AMG?

 AMG is a multilevel technique for solving large-scale linear systems with optimal or near-optimal efficiency.  Unlike geometric multigrid, AMG requires little or no geometric information about the underlying problem and develops a sequence of coarser grids directly from the input matrix.  This feature is especially important for problems discretized on unstructured meshes and irregular grids.

# PyAMG Features

PyAMG features implementations of:

- **Ruge-Stuben (RS)** or *Classical AMG*
- AMG based on **Smoothed Aggregation (SA)**

and experimental support for:

- **Adaptive Smoothed Aggregation (αSA)**
- **Compatible Relaxation (CR)**

The predominant portion of PyAMG is written in Python with a smaller amount of supporting C++ code for performance critical operations.

# Example Usage

PyAMG is easy to use!  The following code constructs a two-dimensional Poisson problem and solves the resulting linear system with Classical AMG.

````python
import pyamg
import numpy as np
A = pyamg.gallery.poisson((500,500), format='csr')  # 2D Poisson problem on 500x500 grid
ml = pyamg.ruge_stuben_solver(A)                    # construct the multigrid hierarchy
print(ml)                                           # print hierarchy information
b = np.random.rand(A.shape[0])                      # pick a random right hand side
x = ml.solve(b, tol=1e-10)                          # solve Ax=b to a tolerance of 1e-10
print("residual: ", np.linalg.norm(b-A*x))          # compute norm of residual vector
````

Program output:

<pre>
multilevel_solver
Number of Levels:     9
Operator Complexity:  2.199
Grid Complexity:      1.667
Coarse Solver:        'pinv2'
  level   unknowns     nonzeros
    0       250000      1248000 [45.47%]
    1       125000      1121002 [40.84%]
    2        31252       280662 [10.23%]
    3         7825        70657 [ 2.57%]
    4         1937        17971 [ 0.65%]
    5          483         4725 [ 0.17%]
    6          124         1352 [ 0.05%]
    7           29          293 [ 0.01%]
    8            7           41 [ 0.00%]

residual:  1.24748994988e-08
</pre>

# Conda

More information can be found at [conda-forge/pyamg-feedstock](https://github.com/conda-forge/pyamg-feedstock).

*Linux:*
[![Circle CI](https://circleci.com/gh/conda-forge/pyamg-feedstock.svg?style=shield)](https://circleci.com/gh/conda-forge/pyamg-feedstock)

*OSX:*
[![TravisCI](https://travis-ci.org/conda-forge/pyamg-feedstock.svg?branch=master)](https://travis-ci.org/conda-forge/pyamg-feedstock)

*Windows:*
[![AppVeyor](https://ci.appveyor.com/api/projects/status/github/conda-forge/pyamg-feedstock?svg=True)](https://ci.appveyor.com/project/conda-forge/pyamg-feedstock/branch/master)

*Version:*
[![Anaconda-Server Badge](https://anaconda.org/conda-forge/pyamg/badges/version.svg)](https://anaconda.org/conda-forge/pyamg)

*Downloads:*
[![Anaconda-Server Badge](https://anaconda.org/conda-forge/pyamg/badges/downloads.svg)](https://anaconda.org/conda-forge/pyamg)

Installing `pyamg` from the `conda-forge` channel can be achieved by adding `conda-forge` to your channels with:

```
conda config --add channels conda-forge
```

Once the `conda-forge` channel has been enabled, `pyamg` can be installed with:

```
conda install pyamg
```

It is possible to list all of the versions of `pyamg` available on your platform with:

```
conda search pyamg --channel conda-forge
```


%package -n python3-pyamg
Summary:	PyAMG: Algebraic Multigrid Solvers in Python
Provides:	python-pyamg
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
BuildRequires:	python3-cffi
BuildRequires:	gcc
BuildRequires:	gdb
%description -n python3-pyamg
[![CI](https://github.com/pyamg/pyamg/workflows/CI/badge.svg)](https://github.com/pyamg/pyamg/actions?query=workflow%3ACI+branch%3Amain)
[![PyPi](https://img.shields.io/pypi/pyversions/pyamg.svg?style=flat-square)](https://pypi.python.org/pypi/pyamg/)
[![codecov](https://codecov.io/gh/pyamg/pyamg/branch/main/graph/badge.svg?token=JpRo1gdALC)](https://codecov.io/gh/pyamg/pyamg)
[![DOI](https://joss.theoj.org/papers/10.21105/joss.04142/status.svg)](https://doi.org/10.21105/joss.04142)

# Installation
PyAMG requires `numpy` and `scipy`

```
pip install pyamg
```

or from source:

```
pip install .
```

(`python setup.py install` will no longer work)

or with conda (see details below)

```
conda config --add channels conda-forge
conda install pyamg
```

# Introduction

PyAMG is a library of **Algebraic Multigrid (AMG)** solvers with a convenient Python interface.

![](https://raw.githubusercontent.com/pyamg/pyamg/main/docs/logo/pyamg_logo_withtext.png)

PyAMG is currently developed and maintained by
[Luke Olson](http://lukeo.cs.illinois.edu),
[Jacob Schroder](https://www.unm.edu/~jbschroder), and
[Ben Southworth](https://arxiv.org/a/southworth_b_1.html).
The organization of the project can be found in [`organization.md`](organization.md) and
examples of use can be found in [`pyamg-examples`](https://github.com/pyamg/pyamg-examples).

**Acknowledgements:**
PyAMG was created by
[Nathan Bell](http://wnbell.com/), 
[Luke Olson](http://lukeo.cs.illinois.edu), and
[Jacob Schroder](https://www.unm.edu/~jbschroder).
Portions of the project were partially supported by the NSF under award DMS-0612448.

# Citing

If you use PyAMG in your work, please consider using the following citation:

<pre>
@article{BeOlSc2022,
  author    = {Nathan Bell and Luke N. Olson and Jacob Schroder},
  title     = {{PyAMG}: Algebraic Multigrid Solvers in Python},
  journal   = {Journal of Open Source Software},
  year      = {2022},
  publisher = {The Open Journal},
  volume    = {7},
  number    = {72},
  pages     = {4142},
  doi       = {10.21105/joss.04142},
  url       = {https://doi.org/10.21105/joss.04142},
}
</pre>

# Getting Help

- For documentation see [http://pyamg.readthedocs.io/en/latest/](http://pyamg.readthedocs.io/en/latest/).

- Create an [issue](https://github.com/pyamg/pyamg/issues).

- Look at the [Tutorial](https://github.com/pyamg/pyamg/wiki/Tutorial) or the [examples](https://github.com/pyamg/pyamg-examples) (for instance  the [0_start_here](https://github.com/pyamg/pyamg-examples/blob/main/0_start_here/demo.py) example).

- Run the unit tests (`pip install pytest`):
  - With PyAMG installed and from a non-source directory:
  ```python
  import pyamg
  pyamg.test()
  ```
  - From the PyAMG source directory and installed (e.g. with `pip install -e .`):
  ```python
  pytest .
  ```

# What is AMG?

 AMG is a multilevel technique for solving large-scale linear systems with optimal or near-optimal efficiency.  Unlike geometric multigrid, AMG requires little or no geometric information about the underlying problem and develops a sequence of coarser grids directly from the input matrix.  This feature is especially important for problems discretized on unstructured meshes and irregular grids.

# PyAMG Features

PyAMG features implementations of:

- **Ruge-Stuben (RS)** or *Classical AMG*
- AMG based on **Smoothed Aggregation (SA)**

and experimental support for:

- **Adaptive Smoothed Aggregation (αSA)**
- **Compatible Relaxation (CR)**

The predominant portion of PyAMG is written in Python with a smaller amount of supporting C++ code for performance critical operations.

# Example Usage

PyAMG is easy to use!  The following code constructs a two-dimensional Poisson problem and solves the resulting linear system with Classical AMG.

````python
import pyamg
import numpy as np
A = pyamg.gallery.poisson((500,500), format='csr')  # 2D Poisson problem on 500x500 grid
ml = pyamg.ruge_stuben_solver(A)                    # construct the multigrid hierarchy
print(ml)                                           # print hierarchy information
b = np.random.rand(A.shape[0])                      # pick a random right hand side
x = ml.solve(b, tol=1e-10)                          # solve Ax=b to a tolerance of 1e-10
print("residual: ", np.linalg.norm(b-A*x))          # compute norm of residual vector
````

Program output:

<pre>
multilevel_solver
Number of Levels:     9
Operator Complexity:  2.199
Grid Complexity:      1.667
Coarse Solver:        'pinv2'
  level   unknowns     nonzeros
    0       250000      1248000 [45.47%]
    1       125000      1121002 [40.84%]
    2        31252       280662 [10.23%]
    3         7825        70657 [ 2.57%]
    4         1937        17971 [ 0.65%]
    5          483         4725 [ 0.17%]
    6          124         1352 [ 0.05%]
    7           29          293 [ 0.01%]
    8            7           41 [ 0.00%]

residual:  1.24748994988e-08
</pre>

# Conda

More information can be found at [conda-forge/pyamg-feedstock](https://github.com/conda-forge/pyamg-feedstock).

*Linux:*
[![Circle CI](https://circleci.com/gh/conda-forge/pyamg-feedstock.svg?style=shield)](https://circleci.com/gh/conda-forge/pyamg-feedstock)

*OSX:*
[![TravisCI](https://travis-ci.org/conda-forge/pyamg-feedstock.svg?branch=master)](https://travis-ci.org/conda-forge/pyamg-feedstock)

*Windows:*
[![AppVeyor](https://ci.appveyor.com/api/projects/status/github/conda-forge/pyamg-feedstock?svg=True)](https://ci.appveyor.com/project/conda-forge/pyamg-feedstock/branch/master)

*Version:*
[![Anaconda-Server Badge](https://anaconda.org/conda-forge/pyamg/badges/version.svg)](https://anaconda.org/conda-forge/pyamg)

*Downloads:*
[![Anaconda-Server Badge](https://anaconda.org/conda-forge/pyamg/badges/downloads.svg)](https://anaconda.org/conda-forge/pyamg)

Installing `pyamg` from the `conda-forge` channel can be achieved by adding `conda-forge` to your channels with:

```
conda config --add channels conda-forge
```

Once the `conda-forge` channel has been enabled, `pyamg` can be installed with:

```
conda install pyamg
```

It is possible to list all of the versions of `pyamg` available on your platform with:

```
conda search pyamg --channel conda-forge
```


%package help
Summary:	Development documents and examples for pyamg
Provides:	python3-pyamg-doc
%description help
[![CI](https://github.com/pyamg/pyamg/workflows/CI/badge.svg)](https://github.com/pyamg/pyamg/actions?query=workflow%3ACI+branch%3Amain)
[![PyPi](https://img.shields.io/pypi/pyversions/pyamg.svg?style=flat-square)](https://pypi.python.org/pypi/pyamg/)
[![codecov](https://codecov.io/gh/pyamg/pyamg/branch/main/graph/badge.svg?token=JpRo1gdALC)](https://codecov.io/gh/pyamg/pyamg)
[![DOI](https://joss.theoj.org/papers/10.21105/joss.04142/status.svg)](https://doi.org/10.21105/joss.04142)

# Installation
PyAMG requires `numpy` and `scipy`

```
pip install pyamg
```

or from source:

```
pip install .
```

(`python setup.py install` will no longer work)

or with conda (see details below)

```
conda config --add channels conda-forge
conda install pyamg
```

# Introduction

PyAMG is a library of **Algebraic Multigrid (AMG)** solvers with a convenient Python interface.

![](https://raw.githubusercontent.com/pyamg/pyamg/main/docs/logo/pyamg_logo_withtext.png)

PyAMG is currently developed and maintained by
[Luke Olson](http://lukeo.cs.illinois.edu),
[Jacob Schroder](https://www.unm.edu/~jbschroder), and
[Ben Southworth](https://arxiv.org/a/southworth_b_1.html).
The organization of the project can be found in [`organization.md`](organization.md) and
examples of use can be found in [`pyamg-examples`](https://github.com/pyamg/pyamg-examples).

**Acknowledgements:**
PyAMG was created by
[Nathan Bell](http://wnbell.com/), 
[Luke Olson](http://lukeo.cs.illinois.edu), and
[Jacob Schroder](https://www.unm.edu/~jbschroder).
Portions of the project were partially supported by the NSF under award DMS-0612448.

# Citing

If you use PyAMG in your work, please consider using the following citation:

<pre>
@article{BeOlSc2022,
  author    = {Nathan Bell and Luke N. Olson and Jacob Schroder},
  title     = {{PyAMG}: Algebraic Multigrid Solvers in Python},
  journal   = {Journal of Open Source Software},
  year      = {2022},
  publisher = {The Open Journal},
  volume    = {7},
  number    = {72},
  pages     = {4142},
  doi       = {10.21105/joss.04142},
  url       = {https://doi.org/10.21105/joss.04142},
}
</pre>

# Getting Help

- For documentation see [http://pyamg.readthedocs.io/en/latest/](http://pyamg.readthedocs.io/en/latest/).

- Create an [issue](https://github.com/pyamg/pyamg/issues).

- Look at the [Tutorial](https://github.com/pyamg/pyamg/wiki/Tutorial) or the [examples](https://github.com/pyamg/pyamg-examples) (for instance  the [0_start_here](https://github.com/pyamg/pyamg-examples/blob/main/0_start_here/demo.py) example).

- Run the unit tests (`pip install pytest`):
  - With PyAMG installed and from a non-source directory:
  ```python
  import pyamg
  pyamg.test()
  ```
  - From the PyAMG source directory and installed (e.g. with `pip install -e .`):
  ```python
  pytest .
  ```

# What is AMG?

 AMG is a multilevel technique for solving large-scale linear systems with optimal or near-optimal efficiency.  Unlike geometric multigrid, AMG requires little or no geometric information about the underlying problem and develops a sequence of coarser grids directly from the input matrix.  This feature is especially important for problems discretized on unstructured meshes and irregular grids.

# PyAMG Features

PyAMG features implementations of:

- **Ruge-Stuben (RS)** or *Classical AMG*
- AMG based on **Smoothed Aggregation (SA)**

and experimental support for:

- **Adaptive Smoothed Aggregation (αSA)**
- **Compatible Relaxation (CR)**

The predominant portion of PyAMG is written in Python with a smaller amount of supporting C++ code for performance critical operations.

# Example Usage

PyAMG is easy to use!  The following code constructs a two-dimensional Poisson problem and solves the resulting linear system with Classical AMG.

````python
import pyamg
import numpy as np
A = pyamg.gallery.poisson((500,500), format='csr')  # 2D Poisson problem on 500x500 grid
ml = pyamg.ruge_stuben_solver(A)                    # construct the multigrid hierarchy
print(ml)                                           # print hierarchy information
b = np.random.rand(A.shape[0])                      # pick a random right hand side
x = ml.solve(b, tol=1e-10)                          # solve Ax=b to a tolerance of 1e-10
print("residual: ", np.linalg.norm(b-A*x))          # compute norm of residual vector
````

Program output:

<pre>
multilevel_solver
Number of Levels:     9
Operator Complexity:  2.199
Grid Complexity:      1.667
Coarse Solver:        'pinv2'
  level   unknowns     nonzeros
    0       250000      1248000 [45.47%]
    1       125000      1121002 [40.84%]
    2        31252       280662 [10.23%]
    3         7825        70657 [ 2.57%]
    4         1937        17971 [ 0.65%]
    5          483         4725 [ 0.17%]
    6          124         1352 [ 0.05%]
    7           29          293 [ 0.01%]
    8            7           41 [ 0.00%]

residual:  1.24748994988e-08
</pre>

# Conda

More information can be found at [conda-forge/pyamg-feedstock](https://github.com/conda-forge/pyamg-feedstock).

*Linux:*
[![Circle CI](https://circleci.com/gh/conda-forge/pyamg-feedstock.svg?style=shield)](https://circleci.com/gh/conda-forge/pyamg-feedstock)

*OSX:*
[![TravisCI](https://travis-ci.org/conda-forge/pyamg-feedstock.svg?branch=master)](https://travis-ci.org/conda-forge/pyamg-feedstock)

*Windows:*
[![AppVeyor](https://ci.appveyor.com/api/projects/status/github/conda-forge/pyamg-feedstock?svg=True)](https://ci.appveyor.com/project/conda-forge/pyamg-feedstock/branch/master)

*Version:*
[![Anaconda-Server Badge](https://anaconda.org/conda-forge/pyamg/badges/version.svg)](https://anaconda.org/conda-forge/pyamg)

*Downloads:*
[![Anaconda-Server Badge](https://anaconda.org/conda-forge/pyamg/badges/downloads.svg)](https://anaconda.org/conda-forge/pyamg)

Installing `pyamg` from the `conda-forge` channel can be achieved by adding `conda-forge` to your channels with:

```
conda config --add channels conda-forge
```

Once the `conda-forge` channel has been enabled, `pyamg` can be installed with:

```
conda install pyamg
```

It is possible to list all of the versions of `pyamg` available on your platform with:

```
conda search pyamg --channel conda-forge
```


%prep
%autosetup -n pyamg-5.0.0

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-pyamg -f filelist.lst
%dir %{python3_sitearch}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Tue Apr 25 2023 Python_Bot <Python_Bot@openeuler.org> - 5.0.0-1
- Package Spec generated