summaryrefslogtreecommitdiff
path: root/python-pycaret-nightly.spec
blob: 0bcf50c3a679f2ff521e9702a04de3d3ba9f9434 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
%global _empty_manifest_terminate_build 0
Name:		python-pycaret-nightly
Version:	2.3.10.dev1651454453
Release:	1
Summary:	Nightly version of PyCaret - An open source, low-code machine learning library in Python.
License:	MIT
URL:		https://github.com/pycaret/pycaret-nightly
Source0:	https://mirrors.nju.edu.cn/pypi/web/packages/76/ae/df80175c7a83e1b3efc6456a29d02dea9a271f837b98fb37daef193700af/pycaret-nightly-2.3.10.dev1651454453.tar.gz
BuildArch:	noarch

Requires:	python3-pandas
Requires:	python3-scipy
Requires:	python3-seaborn
Requires:	python3-matplotlib
Requires:	python3-IPython
Requires:	python3-joblib
Requires:	python3-scikit-learn
Requires:	python3-ipywidgets
Requires:	python3-yellowbrick
Requires:	python3-lightgbm
Requires:	python3-plotly
Requires:	python3-wordcloud
Requires:	python3-textblob
Requires:	python3-cufflinks
Requires:	python3-umap-learn
Requires:	python3-pyLDAvis
Requires:	python3-gensim
Requires:	python3-spacy
Requires:	python3-nltk
Requires:	python3-mlxtend
Requires:	python3-pyod
Requires:	python3-pandas-profiling
Requires:	python3-kmodes
Requires:	python3-mlflow
Requires:	python3-imbalanced-learn
Requires:	python3-scikit-plot
Requires:	python3-Boruta
Requires:	python3-pyyaml
Requires:	python3-numba
Requires:	python3-shap
Requires:	python3-interpret
Requires:	python3-tune-sklearn
Requires:	python3-ray[tune]
Requires:	python3-hyperopt
Requires:	python3-optuna
Requires:	python3-scikit-optimize
Requires:	python3-psutil
Requires:	python3-catboost
Requires:	python3-xgboost
Requires:	python3-explainerdashboard
Requires:	python3-m2cgen
Requires:	python3-evidently
Requires:	python3-autoviz
Requires:	python3-fairlearn
Requires:	python3-fastapi
Requires:	python3-uvicorn
Requires:	python3-gradio
Requires:	python3-fugue
Requires:	python3-boto3
Requires:	python3-azure-storage-blob
Requires:	python3-google-cloud-storage
Requires:	python3-pytest
Requires:	python3-moto
Requires:	python3-codecov
Requires:	python3-dask[dataframe]
Requires:	python3-shap
Requires:	python3-interpret
Requires:	python3-tune-sklearn
Requires:	python3-ray[tune]
Requires:	python3-hyperopt
Requires:	python3-optuna
Requires:	python3-scikit-optimize
Requires:	python3-psutil
Requires:	python3-catboost
Requires:	python3-xgboost
Requires:	python3-explainerdashboard
Requires:	python3-m2cgen
Requires:	python3-evidently
Requires:	python3-autoviz
Requires:	python3-fairlearn
Requires:	python3-fastapi
Requires:	python3-uvicorn
Requires:	python3-gradio
Requires:	python3-fugue
Requires:	python3-boto3
Requires:	python3-azure-storage-blob
Requires:	python3-google-cloud-storage

%description
This is a nightly version of the [PyCaret](https://pypi.org/project/pycaret/) library, intended as a preview of the upcoming 2.3.10 version. It may contain unstable and untested code.
<div align="center">
  
<img src="docs/images/logo.png" alt="drawing" width="200"/>

**An open-source, low-code machine learning library in Python** </br>
:rocket: **Version 2.3.10 out now!** [Check out the release notes here](https://github.com/pycaret/pycaret/releases).
  
<p align="center">
  <a href="https://www.pycaret.org">Official</a> •
  <a href="https://pycaret.gitbook.io/">Docs</a> •
  <a href="https://pycaret.gitbook.io/docs/get-started/installation">Install</a> •
  <a href="https://pycaret.gitbook.io/docs/get-started/tutorials">Tutorials</a> •
  <a href="https://pycaret.gitbook.io/docs/learn-pycaret/faqs">FAQs</a> •
  <a href="https://pycaret.gitbook.io/docs/learn-pycaret/cheat-sheet">Cheat sheet</a> •
  <a href="https://github.com/pycaret/pycaret/discussions">Discussions</a> •
  <a href="https://pycaret.readthedocs.io/en/latest/contribute.html">Contribute</a> •
  <a href="https://github.com/pycaret/pycaret/tree/master/resources">Resources</a> •
  <a href="https://pycaret.gitbook.io/docs/learn-pycaret/official-blog">Blog</a> •
  <a href="https://www.linkedin.com/company/pycaret/">LinkedIn</a> • 
  <a href="https://www.youtube.com/channel/UCxA1YTYJ9BEeo50lxyI_B3g">YouTube</a> • 
  <a href="https://join.slack.com/t/pycaret/shared_invite/zt-row9phbm-BoJdEVPYnGf7_NxNBP307w">Slack</a>

</p>

[![Python](https://img.shields.io/badge/Python-3.6%20%7C%203.7%20%7C%203.8-blue)](https://badge.fury.io/py/pycaret) 
![pytest on push](https://github.com/pycaret/pycaret/workflows/pytest%20on%20push/badge.svg) 
[![Documentation Status](https://readthedocs.org/projects/pip/badge/?version=stable)](http://pip.pypa.io/en/stable/?badge=stable) 
[![PyPI version](https://badge.fury.io/py/pycaret.svg)](https://badge.fury.io/py/pycaret) 
[![License](https://img.shields.io/pypi/l/ansicolortags.svg)](https://img.shields.io/pypi/l/ansicolortags.svg) 
<!-- [![Git count](http://hits.dwyl.com/pycaret/pycaret/pycaret.svg)](http://hits.dwyl.com/pycaret/pycaret/pycaret) -->
[![Slack](https://img.shields.io/badge/slack-chat-green.svg?logo=slack)](https://join.slack.com/t/pycaret/shared_invite/zt-row9phbm-BoJdEVPYnGf7_NxNBP307w)

![alt text](docs/images/quick_start.gif)

<div align="left">
  
## Welcome to PyCaret
PyCaret is an open-source, low-code machine learning library in Python that automates machine learning workflows. It is an end-to-end machine learning and model management tool that speeds up the experiment cycle exponentially and makes you more productive.

In comparison with the other open-source machine learning libraries, PyCaret is an alternate low-code library that can be used to replace hundreds of lines of code with few lines only. This makes experiments exponentially fast and efficient. PyCaret is essentially a Python wrapper around several machine learning libraries and frameworks such as scikit-learn, XGBoost, LightGBM, CatBoost, spaCy, Optuna, Hyperopt, Ray, and few more.

The design and simplicity of PyCaret are inspired by the emerging role of citizen data scientists, a term first used by Gartner. Citizen Data Scientists are power users who can perform both simple and moderately sophisticated analytical tasks that would previously have required more technical expertise.

| Important Links              |                                                                |
| -------------------------- | -------------------------------------------------------------- |
| :star: **[Tutorials]**        | New to PyCaret? Checkout our official notebooks!            |
| :clipboard: **[Example Notebooks]** | Example notebooks created by community.               |
| :orange_book: **[Official Blog]** | Tutorials and articles by contributors.                      |
| :books: **[Documentation]**      | The detailed API docs of PyCaret                         |
| :tv: **[Video Tutorials]**            | Our video tutorial from various events.             |
| ✈️ **[Cheat sheet]**            | Cheat sheet for all functions across modules.             |
| :loudspeaker: **[Discussions]**        | Have questions? Engage with community and contributors.|
| :hammer_and_wrench: **[Changelog]**          | Changes and version history.                 |
| :deciduous_tree: **[Roadmap]**          | PyCaret's software and community development plan.|
  
[tutorials]: https://pycaret.gitbook.io/docs/get-started/tutorials
[Example notebooks]: https://github.com/pycaret/pycaret/tree/master/examples
[Official Blog]: https://pycaret.gitbook.io/docs/learn-pycaret/official-blog
[Documentation]: https://pycaret.gitbook.io
[video tutorials]: https://pycaret.gitbook.io/docs/learn-pycaret/videos
[Cheat sheet]: https://pycaret.gitbook.io/docs/learn-pycaret/cheat-sheet
[Discussions]: https://github.com/pycaret/pycaret/discussions
[changelog]: https://pycaret.gitbook.io/docs/get-started/release-notes
[roadmap]: https://github.com/pycaret/pycaret/issues/1756
 
## Installation

PyCaret's default installation only installs hard dependencies as listed in the [requirements.txt](requirements.txt) file. 

```python
pip install pycaret
```
To install the full version:

```python
pip install pycaret[full]
```

<div align="center">

## Supervised Workflow
  
  Classification           |  Regression
:-------------------------:|:-------------------------:
![](docs/images/pycaret_classification.png)  | ![](docs/images/pycaret_regression.png)

 ## Unsupervised Workflow
  
  Clustering               |  Anomaly Detection
:-------------------------:|:-------------------------:
![](docs/images/pycaret_clustering.png)  |  ![](docs/images/pycaret_anomaly.png)  
  
<div align="left">

## ⚡ PyCaret Time Series Module (beta)
  
PyCaret new time series module is now available in beta. Staying true to simplicity of PyCaret, it is consistent with our existing API and fully loaded with functionalities. Statistical testing, model training and selection (30+ algorithms), model analysis, automated hyperparameter tuning, experiment logging, deployment on cloud, and more. All of this with only few lines of code (just like the other modules of pycaret). If you would like to give it a try, checkout our official [quick start](https://nbviewer.org/github/pycaret/pycaret/blob/time_series_beta/time_series_101.ipynb) notebook.
  
:books: [Time Series Docs](https://pycaret.readthedocs.io/en/time_series/api/time_series.html)
  
:question: [Time Series FAQs](https://github.com/pycaret/pycaret/discussions/categories/faqs?discussions_q=category%3AFAQs+label%3Atime_series)
  
:rocket: [Features and Roadmap](https://github.com/pycaret/pycaret/issues/1648)
  
The module is still in beta. We are adding new functionalities every day and doing weekly pip releases. Please ensure to create a separate python environment to avoid dependency conflicts with main pycaret. The final release of this module will be merged with the main pycaret in next major release.
  
 ```
 pip install pycaret-ts-alpha
 ```  

![alt text](docs/images/pycaret_ts_quickdemo.gif)  

## Who should use PyCaret?
PyCaret is an open source library that anybody can use. In our view the ideal target audience of PyCaret is: <br />

- Experienced Data Scientists who want to increase productivity.
- Citizen Data Scientists who prefer a low code machine learning solution.
- Data Science Professionals who want to build rapid prototypes.
- Data Science and Machine Learning students and enthusiasts.
  
## PyCaret GPU support
With PyCaret >= 2.2, you can train models on GPU and speed up your workflow by 10x. To train models on GPU simply pass `use_gpu = True` in the setup function. There is no change in the use of the API, however, in some cases, additional libraries have to be installed as they are not installed with the default version or the full version. As of the latest release, the following models can be trained on GPU:

- Extreme Gradient Boosting (requires no further installation)
- CatBoost (requires no further installation)
- Light Gradient Boosting Machine requires [GPU installation](https://lightgbm.readthedocs.io/en/latest/GPU-Tutorial.html)
- Logistic Regression, Ridge Classifier, Random Forest, K Neighbors Classifier, K Neighbors Regressor, Support Vector Machine, Linear Regression, Ridge Regression, Lasso Regression requires [cuML >= 0.15](https://github.com/rapidsai/cuml)

## License
PyCaret is completely free and open-source and licensed under the [MIT](https://github.com/pycaret/pycaret/blob/master/LICENSE) license. 

## Contributors
<a href="https://github.com/pycaret/pycaret/graphs/contributors">
  <img src="https://contributors-img.web.app/image?repo=pycaret/pycaret" width = 500/>
</a>




%package -n python3-pycaret-nightly
Summary:	Nightly version of PyCaret - An open source, low-code machine learning library in Python.
Provides:	python-pycaret-nightly
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-pycaret-nightly
This is a nightly version of the [PyCaret](https://pypi.org/project/pycaret/) library, intended as a preview of the upcoming 2.3.10 version. It may contain unstable and untested code.
<div align="center">
  
<img src="docs/images/logo.png" alt="drawing" width="200"/>

**An open-source, low-code machine learning library in Python** </br>
:rocket: **Version 2.3.10 out now!** [Check out the release notes here](https://github.com/pycaret/pycaret/releases).
  
<p align="center">
  <a href="https://www.pycaret.org">Official</a> •
  <a href="https://pycaret.gitbook.io/">Docs</a> •
  <a href="https://pycaret.gitbook.io/docs/get-started/installation">Install</a> •
  <a href="https://pycaret.gitbook.io/docs/get-started/tutorials">Tutorials</a> •
  <a href="https://pycaret.gitbook.io/docs/learn-pycaret/faqs">FAQs</a> •
  <a href="https://pycaret.gitbook.io/docs/learn-pycaret/cheat-sheet">Cheat sheet</a> •
  <a href="https://github.com/pycaret/pycaret/discussions">Discussions</a> •
  <a href="https://pycaret.readthedocs.io/en/latest/contribute.html">Contribute</a> •
  <a href="https://github.com/pycaret/pycaret/tree/master/resources">Resources</a> •
  <a href="https://pycaret.gitbook.io/docs/learn-pycaret/official-blog">Blog</a> •
  <a href="https://www.linkedin.com/company/pycaret/">LinkedIn</a> • 
  <a href="https://www.youtube.com/channel/UCxA1YTYJ9BEeo50lxyI_B3g">YouTube</a> • 
  <a href="https://join.slack.com/t/pycaret/shared_invite/zt-row9phbm-BoJdEVPYnGf7_NxNBP307w">Slack</a>

</p>

[![Python](https://img.shields.io/badge/Python-3.6%20%7C%203.7%20%7C%203.8-blue)](https://badge.fury.io/py/pycaret) 
![pytest on push](https://github.com/pycaret/pycaret/workflows/pytest%20on%20push/badge.svg) 
[![Documentation Status](https://readthedocs.org/projects/pip/badge/?version=stable)](http://pip.pypa.io/en/stable/?badge=stable) 
[![PyPI version](https://badge.fury.io/py/pycaret.svg)](https://badge.fury.io/py/pycaret) 
[![License](https://img.shields.io/pypi/l/ansicolortags.svg)](https://img.shields.io/pypi/l/ansicolortags.svg) 
<!-- [![Git count](http://hits.dwyl.com/pycaret/pycaret/pycaret.svg)](http://hits.dwyl.com/pycaret/pycaret/pycaret) -->
[![Slack](https://img.shields.io/badge/slack-chat-green.svg?logo=slack)](https://join.slack.com/t/pycaret/shared_invite/zt-row9phbm-BoJdEVPYnGf7_NxNBP307w)

![alt text](docs/images/quick_start.gif)

<div align="left">
  
## Welcome to PyCaret
PyCaret is an open-source, low-code machine learning library in Python that automates machine learning workflows. It is an end-to-end machine learning and model management tool that speeds up the experiment cycle exponentially and makes you more productive.

In comparison with the other open-source machine learning libraries, PyCaret is an alternate low-code library that can be used to replace hundreds of lines of code with few lines only. This makes experiments exponentially fast and efficient. PyCaret is essentially a Python wrapper around several machine learning libraries and frameworks such as scikit-learn, XGBoost, LightGBM, CatBoost, spaCy, Optuna, Hyperopt, Ray, and few more.

The design and simplicity of PyCaret are inspired by the emerging role of citizen data scientists, a term first used by Gartner. Citizen Data Scientists are power users who can perform both simple and moderately sophisticated analytical tasks that would previously have required more technical expertise.

| Important Links              |                                                                |
| -------------------------- | -------------------------------------------------------------- |
| :star: **[Tutorials]**        | New to PyCaret? Checkout our official notebooks!            |
| :clipboard: **[Example Notebooks]** | Example notebooks created by community.               |
| :orange_book: **[Official Blog]** | Tutorials and articles by contributors.                      |
| :books: **[Documentation]**      | The detailed API docs of PyCaret                         |
| :tv: **[Video Tutorials]**            | Our video tutorial from various events.             |
| ✈️ **[Cheat sheet]**            | Cheat sheet for all functions across modules.             |
| :loudspeaker: **[Discussions]**        | Have questions? Engage with community and contributors.|
| :hammer_and_wrench: **[Changelog]**          | Changes and version history.                 |
| :deciduous_tree: **[Roadmap]**          | PyCaret's software and community development plan.|
  
[tutorials]: https://pycaret.gitbook.io/docs/get-started/tutorials
[Example notebooks]: https://github.com/pycaret/pycaret/tree/master/examples
[Official Blog]: https://pycaret.gitbook.io/docs/learn-pycaret/official-blog
[Documentation]: https://pycaret.gitbook.io
[video tutorials]: https://pycaret.gitbook.io/docs/learn-pycaret/videos
[Cheat sheet]: https://pycaret.gitbook.io/docs/learn-pycaret/cheat-sheet
[Discussions]: https://github.com/pycaret/pycaret/discussions
[changelog]: https://pycaret.gitbook.io/docs/get-started/release-notes
[roadmap]: https://github.com/pycaret/pycaret/issues/1756
 
## Installation

PyCaret's default installation only installs hard dependencies as listed in the [requirements.txt](requirements.txt) file. 

```python
pip install pycaret
```
To install the full version:

```python
pip install pycaret[full]
```

<div align="center">

## Supervised Workflow
  
  Classification           |  Regression
:-------------------------:|:-------------------------:
![](docs/images/pycaret_classification.png)  | ![](docs/images/pycaret_regression.png)

 ## Unsupervised Workflow
  
  Clustering               |  Anomaly Detection
:-------------------------:|:-------------------------:
![](docs/images/pycaret_clustering.png)  |  ![](docs/images/pycaret_anomaly.png)  
  
<div align="left">

## ⚡ PyCaret Time Series Module (beta)
  
PyCaret new time series module is now available in beta. Staying true to simplicity of PyCaret, it is consistent with our existing API and fully loaded with functionalities. Statistical testing, model training and selection (30+ algorithms), model analysis, automated hyperparameter tuning, experiment logging, deployment on cloud, and more. All of this with only few lines of code (just like the other modules of pycaret). If you would like to give it a try, checkout our official [quick start](https://nbviewer.org/github/pycaret/pycaret/blob/time_series_beta/time_series_101.ipynb) notebook.
  
:books: [Time Series Docs](https://pycaret.readthedocs.io/en/time_series/api/time_series.html)
  
:question: [Time Series FAQs](https://github.com/pycaret/pycaret/discussions/categories/faqs?discussions_q=category%3AFAQs+label%3Atime_series)
  
:rocket: [Features and Roadmap](https://github.com/pycaret/pycaret/issues/1648)
  
The module is still in beta. We are adding new functionalities every day and doing weekly pip releases. Please ensure to create a separate python environment to avoid dependency conflicts with main pycaret. The final release of this module will be merged with the main pycaret in next major release.
  
 ```
 pip install pycaret-ts-alpha
 ```  

![alt text](docs/images/pycaret_ts_quickdemo.gif)  

## Who should use PyCaret?
PyCaret is an open source library that anybody can use. In our view the ideal target audience of PyCaret is: <br />

- Experienced Data Scientists who want to increase productivity.
- Citizen Data Scientists who prefer a low code machine learning solution.
- Data Science Professionals who want to build rapid prototypes.
- Data Science and Machine Learning students and enthusiasts.
  
## PyCaret GPU support
With PyCaret >= 2.2, you can train models on GPU and speed up your workflow by 10x. To train models on GPU simply pass `use_gpu = True` in the setup function. There is no change in the use of the API, however, in some cases, additional libraries have to be installed as they are not installed with the default version or the full version. As of the latest release, the following models can be trained on GPU:

- Extreme Gradient Boosting (requires no further installation)
- CatBoost (requires no further installation)
- Light Gradient Boosting Machine requires [GPU installation](https://lightgbm.readthedocs.io/en/latest/GPU-Tutorial.html)
- Logistic Regression, Ridge Classifier, Random Forest, K Neighbors Classifier, K Neighbors Regressor, Support Vector Machine, Linear Regression, Ridge Regression, Lasso Regression requires [cuML >= 0.15](https://github.com/rapidsai/cuml)

## License
PyCaret is completely free and open-source and licensed under the [MIT](https://github.com/pycaret/pycaret/blob/master/LICENSE) license. 

## Contributors
<a href="https://github.com/pycaret/pycaret/graphs/contributors">
  <img src="https://contributors-img.web.app/image?repo=pycaret/pycaret" width = 500/>
</a>




%package help
Summary:	Development documents and examples for pycaret-nightly
Provides:	python3-pycaret-nightly-doc
%description help
This is a nightly version of the [PyCaret](https://pypi.org/project/pycaret/) library, intended as a preview of the upcoming 2.3.10 version. It may contain unstable and untested code.
<div align="center">
  
<img src="docs/images/logo.png" alt="drawing" width="200"/>

**An open-source, low-code machine learning library in Python** </br>
:rocket: **Version 2.3.10 out now!** [Check out the release notes here](https://github.com/pycaret/pycaret/releases).
  
<p align="center">
  <a href="https://www.pycaret.org">Official</a> •
  <a href="https://pycaret.gitbook.io/">Docs</a> •
  <a href="https://pycaret.gitbook.io/docs/get-started/installation">Install</a> •
  <a href="https://pycaret.gitbook.io/docs/get-started/tutorials">Tutorials</a> •
  <a href="https://pycaret.gitbook.io/docs/learn-pycaret/faqs">FAQs</a> •
  <a href="https://pycaret.gitbook.io/docs/learn-pycaret/cheat-sheet">Cheat sheet</a> •
  <a href="https://github.com/pycaret/pycaret/discussions">Discussions</a> •
  <a href="https://pycaret.readthedocs.io/en/latest/contribute.html">Contribute</a> •
  <a href="https://github.com/pycaret/pycaret/tree/master/resources">Resources</a> •
  <a href="https://pycaret.gitbook.io/docs/learn-pycaret/official-blog">Blog</a> •
  <a href="https://www.linkedin.com/company/pycaret/">LinkedIn</a> • 
  <a href="https://www.youtube.com/channel/UCxA1YTYJ9BEeo50lxyI_B3g">YouTube</a> • 
  <a href="https://join.slack.com/t/pycaret/shared_invite/zt-row9phbm-BoJdEVPYnGf7_NxNBP307w">Slack</a>

</p>

[![Python](https://img.shields.io/badge/Python-3.6%20%7C%203.7%20%7C%203.8-blue)](https://badge.fury.io/py/pycaret) 
![pytest on push](https://github.com/pycaret/pycaret/workflows/pytest%20on%20push/badge.svg) 
[![Documentation Status](https://readthedocs.org/projects/pip/badge/?version=stable)](http://pip.pypa.io/en/stable/?badge=stable) 
[![PyPI version](https://badge.fury.io/py/pycaret.svg)](https://badge.fury.io/py/pycaret) 
[![License](https://img.shields.io/pypi/l/ansicolortags.svg)](https://img.shields.io/pypi/l/ansicolortags.svg) 
<!-- [![Git count](http://hits.dwyl.com/pycaret/pycaret/pycaret.svg)](http://hits.dwyl.com/pycaret/pycaret/pycaret) -->
[![Slack](https://img.shields.io/badge/slack-chat-green.svg?logo=slack)](https://join.slack.com/t/pycaret/shared_invite/zt-row9phbm-BoJdEVPYnGf7_NxNBP307w)

![alt text](docs/images/quick_start.gif)

<div align="left">
  
## Welcome to PyCaret
PyCaret is an open-source, low-code machine learning library in Python that automates machine learning workflows. It is an end-to-end machine learning and model management tool that speeds up the experiment cycle exponentially and makes you more productive.

In comparison with the other open-source machine learning libraries, PyCaret is an alternate low-code library that can be used to replace hundreds of lines of code with few lines only. This makes experiments exponentially fast and efficient. PyCaret is essentially a Python wrapper around several machine learning libraries and frameworks such as scikit-learn, XGBoost, LightGBM, CatBoost, spaCy, Optuna, Hyperopt, Ray, and few more.

The design and simplicity of PyCaret are inspired by the emerging role of citizen data scientists, a term first used by Gartner. Citizen Data Scientists are power users who can perform both simple and moderately sophisticated analytical tasks that would previously have required more technical expertise.

| Important Links              |                                                                |
| -------------------------- | -------------------------------------------------------------- |
| :star: **[Tutorials]**        | New to PyCaret? Checkout our official notebooks!            |
| :clipboard: **[Example Notebooks]** | Example notebooks created by community.               |
| :orange_book: **[Official Blog]** | Tutorials and articles by contributors.                      |
| :books: **[Documentation]**      | The detailed API docs of PyCaret                         |
| :tv: **[Video Tutorials]**            | Our video tutorial from various events.             |
| ✈️ **[Cheat sheet]**            | Cheat sheet for all functions across modules.             |
| :loudspeaker: **[Discussions]**        | Have questions? Engage with community and contributors.|
| :hammer_and_wrench: **[Changelog]**          | Changes and version history.                 |
| :deciduous_tree: **[Roadmap]**          | PyCaret's software and community development plan.|
  
[tutorials]: https://pycaret.gitbook.io/docs/get-started/tutorials
[Example notebooks]: https://github.com/pycaret/pycaret/tree/master/examples
[Official Blog]: https://pycaret.gitbook.io/docs/learn-pycaret/official-blog
[Documentation]: https://pycaret.gitbook.io
[video tutorials]: https://pycaret.gitbook.io/docs/learn-pycaret/videos
[Cheat sheet]: https://pycaret.gitbook.io/docs/learn-pycaret/cheat-sheet
[Discussions]: https://github.com/pycaret/pycaret/discussions
[changelog]: https://pycaret.gitbook.io/docs/get-started/release-notes
[roadmap]: https://github.com/pycaret/pycaret/issues/1756
 
## Installation

PyCaret's default installation only installs hard dependencies as listed in the [requirements.txt](requirements.txt) file. 

```python
pip install pycaret
```
To install the full version:

```python
pip install pycaret[full]
```

<div align="center">

## Supervised Workflow
  
  Classification           |  Regression
:-------------------------:|:-------------------------:
![](docs/images/pycaret_classification.png)  | ![](docs/images/pycaret_regression.png)

 ## Unsupervised Workflow
  
  Clustering               |  Anomaly Detection
:-------------------------:|:-------------------------:
![](docs/images/pycaret_clustering.png)  |  ![](docs/images/pycaret_anomaly.png)  
  
<div align="left">

## ⚡ PyCaret Time Series Module (beta)
  
PyCaret new time series module is now available in beta. Staying true to simplicity of PyCaret, it is consistent with our existing API and fully loaded with functionalities. Statistical testing, model training and selection (30+ algorithms), model analysis, automated hyperparameter tuning, experiment logging, deployment on cloud, and more. All of this with only few lines of code (just like the other modules of pycaret). If you would like to give it a try, checkout our official [quick start](https://nbviewer.org/github/pycaret/pycaret/blob/time_series_beta/time_series_101.ipynb) notebook.
  
:books: [Time Series Docs](https://pycaret.readthedocs.io/en/time_series/api/time_series.html)
  
:question: [Time Series FAQs](https://github.com/pycaret/pycaret/discussions/categories/faqs?discussions_q=category%3AFAQs+label%3Atime_series)
  
:rocket: [Features and Roadmap](https://github.com/pycaret/pycaret/issues/1648)
  
The module is still in beta. We are adding new functionalities every day and doing weekly pip releases. Please ensure to create a separate python environment to avoid dependency conflicts with main pycaret. The final release of this module will be merged with the main pycaret in next major release.
  
 ```
 pip install pycaret-ts-alpha
 ```  

![alt text](docs/images/pycaret_ts_quickdemo.gif)  

## Who should use PyCaret?
PyCaret is an open source library that anybody can use. In our view the ideal target audience of PyCaret is: <br />

- Experienced Data Scientists who want to increase productivity.
- Citizen Data Scientists who prefer a low code machine learning solution.
- Data Science Professionals who want to build rapid prototypes.
- Data Science and Machine Learning students and enthusiasts.
  
## PyCaret GPU support
With PyCaret >= 2.2, you can train models on GPU and speed up your workflow by 10x. To train models on GPU simply pass `use_gpu = True` in the setup function. There is no change in the use of the API, however, in some cases, additional libraries have to be installed as they are not installed with the default version or the full version. As of the latest release, the following models can be trained on GPU:

- Extreme Gradient Boosting (requires no further installation)
- CatBoost (requires no further installation)
- Light Gradient Boosting Machine requires [GPU installation](https://lightgbm.readthedocs.io/en/latest/GPU-Tutorial.html)
- Logistic Regression, Ridge Classifier, Random Forest, K Neighbors Classifier, K Neighbors Regressor, Support Vector Machine, Linear Regression, Ridge Regression, Lasso Regression requires [cuML >= 0.15](https://github.com/rapidsai/cuml)

## License
PyCaret is completely free and open-source and licensed under the [MIT](https://github.com/pycaret/pycaret/blob/master/LICENSE) license. 

## Contributors
<a href="https://github.com/pycaret/pycaret/graphs/contributors">
  <img src="https://contributors-img.web.app/image?repo=pycaret/pycaret" width = 500/>
</a>




%prep
%autosetup -n pycaret-nightly-2.3.10.dev1651454453

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-pycaret-nightly -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Tue Apr 25 2023 Python_Bot <Python_Bot@openeuler.org> - 2.3.10.dev1651454453-1
- Package Spec generated