diff options
author | CoprDistGit <infra@openeuler.org> | 2023-06-20 04:16:36 +0000 |
---|---|---|
committer | CoprDistGit <infra@openeuler.org> | 2023-06-20 04:16:36 +0000 |
commit | 7a40bd823b7f28b1f0cc7fcdfef6209b71072f21 (patch) | |
tree | ef6fce2acd553624cb2e7b98e1e26221376be49b | |
parent | 0fc2187d3bedb606d78197db79ffe92acfe20d53 (diff) |
automatic import of python-pycpdopeneuler20.03
-rw-r--r-- | .gitignore | 1 | ||||
-rw-r--r-- | python-pycpd.spec | 260 | ||||
-rw-r--r-- | sources | 1 |
3 files changed, 262 insertions, 0 deletions
@@ -0,0 +1 @@ +/pycpd-2.0.0.tar.gz diff --git a/python-pycpd.spec b/python-pycpd.spec new file mode 100644 index 0000000..b8a2159 --- /dev/null +++ b/python-pycpd.spec @@ -0,0 +1,260 @@ +%global _empty_manifest_terminate_build 0 +Name: python-pycpd +Version: 2.0.0 +Release: 1 +Summary: Pure Numpy Implementation of the Coherent Point Drift Algorithm +License: MIT +URL: https://github.com/siavashk/pycpd +Source0: https://mirrors.aliyun.com/pypi/web/packages/c7/e3/e867299fbc745cbec071c13d45b74e255e86752da9ebd8962bf55fc54aa4/pycpd-2.0.0.tar.gz +BuildArch: noarch + +Requires: python3-numpy +Requires: python3-future + +%description +############# +Python-CPD +############# +.. image:: https://travis-ci.com/siavashk/pycpd.svg?branch=master + :target: https://travis-ci.com/siavashk/pycpd + +Pure Numpy Implementation of the Coherent Point Drift Algorithm. + +MIT License. + +************* +Introduction +************* + +This is a pure numpy implementation of the coherent point drift `CPD <https://arxiv.org/abs/0905.2635/>`_ algorithm by Myronenko and Song. It provides three registration methods for point clouds: 1) Scale and rigid registration; 2) Affine registration; and 3) Gaussian regularized non-rigid registration. + +The CPD algorithm is a registration method for aligning two point clouds. In this method, the moving point cloud is modelled as a Gaussian Mixture Model (GMM) and the fixed point cloud are treated as observations from the GMM. The optimal transformation parameters maximze the Maximum A Posteriori (MAP) estimation that the observed point cloud is drawn from the GMM. + +The registration methods work for 2D and 3D point clouds. For more information, please refer to my `blog <http://siavashk.github.io/2017/05/14/coherent-point-drift/>`_. + +************* +Pip Install +************* +.. code-block:: bash + + pip install pycpd + +************************ +Installation From Source +************************ + +Clone the repository to a location, referred to as the ``root`` folder. For example: + +.. code-block:: bash + + git clone https://github.com/siavashk/pycpd.git $HOME/pycpd + +Install the package: + +.. code-block:: bash + + pip install . + +For running sample registration examples under ``examples``, you will need ``matplotlib`` to visualize the registration. This can be downloaded by running: + +.. code-block:: bash + + pip install matplotlib + +***** +Usage +***** + +Each registration method is contained within a single class inside the ``pycpd`` subfolder. To try out the registration, you can simply run: + +.. code-block:: bash + + python examples/fish_{Transform}_{Dimension}.py + +where ``Transform`` is either ``rigid``, ``affine`` or ``deformable`` and ``Dimension`` is either ``2D`` or ``3D``. Note that examples are meant to be run from the ``root`` folder. + + + + +%package -n python3-pycpd +Summary: Pure Numpy Implementation of the Coherent Point Drift Algorithm +Provides: python-pycpd +BuildRequires: python3-devel +BuildRequires: python3-setuptools +BuildRequires: python3-pip +%description -n python3-pycpd +############# +Python-CPD +############# +.. image:: https://travis-ci.com/siavashk/pycpd.svg?branch=master + :target: https://travis-ci.com/siavashk/pycpd + +Pure Numpy Implementation of the Coherent Point Drift Algorithm. + +MIT License. + +************* +Introduction +************* + +This is a pure numpy implementation of the coherent point drift `CPD <https://arxiv.org/abs/0905.2635/>`_ algorithm by Myronenko and Song. It provides three registration methods for point clouds: 1) Scale and rigid registration; 2) Affine registration; and 3) Gaussian regularized non-rigid registration. + +The CPD algorithm is a registration method for aligning two point clouds. In this method, the moving point cloud is modelled as a Gaussian Mixture Model (GMM) and the fixed point cloud are treated as observations from the GMM. The optimal transformation parameters maximze the Maximum A Posteriori (MAP) estimation that the observed point cloud is drawn from the GMM. + +The registration methods work for 2D and 3D point clouds. For more information, please refer to my `blog <http://siavashk.github.io/2017/05/14/coherent-point-drift/>`_. + +************* +Pip Install +************* +.. code-block:: bash + + pip install pycpd + +************************ +Installation From Source +************************ + +Clone the repository to a location, referred to as the ``root`` folder. For example: + +.. code-block:: bash + + git clone https://github.com/siavashk/pycpd.git $HOME/pycpd + +Install the package: + +.. code-block:: bash + + pip install . + +For running sample registration examples under ``examples``, you will need ``matplotlib`` to visualize the registration. This can be downloaded by running: + +.. code-block:: bash + + pip install matplotlib + +***** +Usage +***** + +Each registration method is contained within a single class inside the ``pycpd`` subfolder. To try out the registration, you can simply run: + +.. code-block:: bash + + python examples/fish_{Transform}_{Dimension}.py + +where ``Transform`` is either ``rigid``, ``affine`` or ``deformable`` and ``Dimension`` is either ``2D`` or ``3D``. Note that examples are meant to be run from the ``root`` folder. + + + + +%package help +Summary: Development documents and examples for pycpd +Provides: python3-pycpd-doc +%description help +############# +Python-CPD +############# +.. image:: https://travis-ci.com/siavashk/pycpd.svg?branch=master + :target: https://travis-ci.com/siavashk/pycpd + +Pure Numpy Implementation of the Coherent Point Drift Algorithm. + +MIT License. + +************* +Introduction +************* + +This is a pure numpy implementation of the coherent point drift `CPD <https://arxiv.org/abs/0905.2635/>`_ algorithm by Myronenko and Song. It provides three registration methods for point clouds: 1) Scale and rigid registration; 2) Affine registration; and 3) Gaussian regularized non-rigid registration. + +The CPD algorithm is a registration method for aligning two point clouds. In this method, the moving point cloud is modelled as a Gaussian Mixture Model (GMM) and the fixed point cloud are treated as observations from the GMM. The optimal transformation parameters maximze the Maximum A Posteriori (MAP) estimation that the observed point cloud is drawn from the GMM. + +The registration methods work for 2D and 3D point clouds. For more information, please refer to my `blog <http://siavashk.github.io/2017/05/14/coherent-point-drift/>`_. + +************* +Pip Install +************* +.. code-block:: bash + + pip install pycpd + +************************ +Installation From Source +************************ + +Clone the repository to a location, referred to as the ``root`` folder. For example: + +.. code-block:: bash + + git clone https://github.com/siavashk/pycpd.git $HOME/pycpd + +Install the package: + +.. code-block:: bash + + pip install . + +For running sample registration examples under ``examples``, you will need ``matplotlib`` to visualize the registration. This can be downloaded by running: + +.. code-block:: bash + + pip install matplotlib + +***** +Usage +***** + +Each registration method is contained within a single class inside the ``pycpd`` subfolder. To try out the registration, you can simply run: + +.. code-block:: bash + + python examples/fish_{Transform}_{Dimension}.py + +where ``Transform`` is either ``rigid``, ``affine`` or ``deformable`` and ``Dimension`` is either ``2D`` or ``3D``. Note that examples are meant to be run from the ``root`` folder. + + + + +%prep +%autosetup -n pycpd-2.0.0 + +%build +%py3_build + +%install +%py3_install +install -d -m755 %{buildroot}/%{_pkgdocdir} +if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi +if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi +if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi +if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi +pushd %{buildroot} +if [ -d usr/lib ]; then + find usr/lib -type f -printf "\"/%h/%f\"\n" >> filelist.lst +fi +if [ -d usr/lib64 ]; then + find usr/lib64 -type f -printf "\"/%h/%f\"\n" >> filelist.lst +fi +if [ -d usr/bin ]; then + find usr/bin -type f -printf "\"/%h/%f\"\n" >> filelist.lst +fi +if [ -d usr/sbin ]; then + find usr/sbin -type f -printf "\"/%h/%f\"\n" >> filelist.lst +fi +touch doclist.lst +if [ -d usr/share/man ]; then + find usr/share/man -type f -printf "\"/%h/%f.gz\"\n" >> doclist.lst +fi +popd +mv %{buildroot}/filelist.lst . +mv %{buildroot}/doclist.lst . + +%files -n python3-pycpd -f filelist.lst +%dir %{python3_sitelib}/* + +%files help -f doclist.lst +%{_docdir}/* + +%changelog +* Tue Jun 20 2023 Python_Bot <Python_Bot@openeuler.org> - 2.0.0-1 +- Package Spec generated @@ -0,0 +1 @@ +6bb6a81ef6b164506069a0023e2d5068 pycpd-2.0.0.tar.gz |