summaryrefslogtreecommitdiff
path: root/python-pygam.spec
blob: b072e1c4eb099b3217c94969408306eb097e6ed8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
%global _empty_manifest_terminate_build 0
Name:		python-pygam
Version:	0.9.0
Release:	1
Summary:	please add a summary manually as the author left a blank one
License:	Apache-2.0
URL:		https://pypi.org/project/pygam/
Source0:	https://mirrors.nju.edu.cn/pypi/web/packages/39/26/6e6756bc2398648bc26322d94aa02668319297884e0eea79dd9a5ecdc703/pygam-0.9.0.tar.gz
BuildArch:	noarch

Requires:	python3-numpy
Requires:	python3-progressbar2
Requires:	python3-scipy

%description
## Installation
```pip install pygam```
### scikit-sparse
To speed up optimization on large models with constraints, it helps to have `scikit-sparse` installed because it contains a slightly faster, sparse version of Cholesky factorization. The import from `scikit-sparse` references `nose`, so you'll need that too.
The easiest way is to use Conda:  
```conda install -c conda-forge scikit-sparse nose```
[scikit-sparse docs](http://pythonhosted.org/scikit-sparse/overview.html#download)
## Contributing - HELP REQUESTED
Contributions are most welcome!
You can help pyGAM in many ways including:
- Working on a [known bug](https://github.com/dswah/pyGAM/labels/bug).
- Trying it out and reporting bugs or what was difficult.
- Helping improve the documentation.
- Writing new [distributions](https://github.com/dswah/pyGAM/blob/master/pygam/distributions.py), and [link functions](https://github.com/dswah/pyGAM/blob/master/pygam/links.py).
- If you need some ideas, please take a look at the [issues](https://github.com/dswah/pyGAM/issues).
To start:
- **fork the project** and cut a new branch
- Now **install** the testing **dependencies**
```
conda install pytest numpy pandas scipy pytest-cov cython
pip install --upgrade pip
pip install -r requirements.txt
```
It helps to add a **sym-link** of the forked project to your **python path**. To do this, you should **install [flit](http://flit.readthedocs.io/en/latest/index.html)**:
- ```pip install flit```
- Then from main project folder (ie `.../pyGAM`) do:
```flit install -s```
Make some changes and write a test...
- **Test** your contribution (eg from the `.../pyGAM`):
```py.test -s```
- When you are happy with your changes, make a **pull request** into the `master` branch of the main project.
## About
Generalized Additive Models (GAMs) are smooth semi-parametric models of the form:
![alt tag](http://latex.codecogs.com/svg.latex?g\(\mathbb{E}\[y|X\]\)=\beta_0+f_1(X_1)+f_2(X_2)+\dots+f_p(X_p))
where `X.T = [X_1, X_2, ..., X_p]` are independent variables, `y` is the dependent variable, and `g()` is the link function that relates our predictor variables to the expected value of the dependent variable.
The feature functions `f_i()` are built using **penalized B splines**, which allow us to **automatically model non-linear relationships** without having to manually try out many different transformations on each variable.
<img src=imgs/pygam_basis.png>
GAMs extend generalized linear models by allowing non-linear functions of features while maintaining additivity. Since the model is additive, it is easy to examine the effect of each `X_i` on `Y` individually while holding all other predictors constant.
The result is a very flexible model, where it is easy to incorporate prior knowledge and control overfitting.
## Citing pyGAM
Please consider citing pyGAM if it has helped you in your research or work:
Daniel Servén, & Charlie Brummitt. (2018, March 27). pyGAM: Generalized Additive Models in Python. Zenodo. [DOI: 10.5281/zenodo.1208723](http://doi.org/10.5281/zenodo.1208723)
BibTex:
```
@misc{daniel\_serven\_2018_1208723,
  author       = {Daniel Servén and
                  Charlie Brummitt},
  title        = {pyGAM: Generalized Additive Models in Python},
  month        = mar,
  year         = 2018,
  doi          = {10.5281/zenodo.1208723},
  url          = {https://doi.org/10.5281/zenodo.1208723}
}
```
## References
1. Simon N. Wood, 2006  
Generalized Additive Models: an introduction with R
0. Hastie, Tibshirani, Friedman  
The Elements of Statistical Learning  
http://statweb.stanford.edu/~tibs/ElemStatLearn/printings/ESLII_print10.pdf  
0. James, Witten, Hastie and Tibshirani  
An Introduction to Statistical Learning  
http://www-bcf.usc.edu/~gareth/ISL/ISLR%20Sixth%20Printing.pdf  
0. Paul Eilers & Brian Marx, 1996
Flexible Smoothing with B-splines and Penalties
http://www.stat.washington.edu/courses/stat527/s13/readings/EilersMarx_StatSci_1996.pdf
0. Kim Larsen, 2015  
GAM: The Predictive Modeling Silver Bullet  
http://multithreaded.stitchfix.com/assets/files/gam.pdf  
0. Deva Ramanan, 2008  
UCI Machine Learning: Notes on IRLS  
http://www.ics.uci.edu/~dramanan/teaching/ics273a_winter08/homework/irls_notes.pdf  
0. Paul Eilers & Brian Marx, 2015  
International Biometric Society: A Crash Course on P-splines  
http://www.ibschannel2015.nl/project/userfiles/Crash_course_handout.pdf
0. Keiding, Niels, 1991  
Age-specific incidence and prevalence: a statistical perspective
<!---http://www.cs.princeton.edu/courses/archive/fall11/cos323/notes/cos323_f11_lecture09_svd.pdf--->
<!---http://www.stats.uwo.ca/faculty/braun/ss3859/notes/Chapter4/ch4.pdf--->
<!---http://www.stat.berkeley.edu/~census/mlesan.pdf--->
<!---http://web.mit.edu/hyperbook/Patrikalakis-Maekawa-Cho/node17.html---> <!--- this helped me get spline gradients--->
<!---https://scikit-sparse.readthedocs.io/en/latest/overview.html#developers--->
<!---https://vincentarelbundock.github.io/Rdatasets/datasets.html---> <!--- R Datasets!--->

%package -n python3-pygam
Summary:	please add a summary manually as the author left a blank one
Provides:	python-pygam
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-pygam
## Installation
```pip install pygam```
### scikit-sparse
To speed up optimization on large models with constraints, it helps to have `scikit-sparse` installed because it contains a slightly faster, sparse version of Cholesky factorization. The import from `scikit-sparse` references `nose`, so you'll need that too.
The easiest way is to use Conda:  
```conda install -c conda-forge scikit-sparse nose```
[scikit-sparse docs](http://pythonhosted.org/scikit-sparse/overview.html#download)
## Contributing - HELP REQUESTED
Contributions are most welcome!
You can help pyGAM in many ways including:
- Working on a [known bug](https://github.com/dswah/pyGAM/labels/bug).
- Trying it out and reporting bugs or what was difficult.
- Helping improve the documentation.
- Writing new [distributions](https://github.com/dswah/pyGAM/blob/master/pygam/distributions.py), and [link functions](https://github.com/dswah/pyGAM/blob/master/pygam/links.py).
- If you need some ideas, please take a look at the [issues](https://github.com/dswah/pyGAM/issues).
To start:
- **fork the project** and cut a new branch
- Now **install** the testing **dependencies**
```
conda install pytest numpy pandas scipy pytest-cov cython
pip install --upgrade pip
pip install -r requirements.txt
```
It helps to add a **sym-link** of the forked project to your **python path**. To do this, you should **install [flit](http://flit.readthedocs.io/en/latest/index.html)**:
- ```pip install flit```
- Then from main project folder (ie `.../pyGAM`) do:
```flit install -s```
Make some changes and write a test...
- **Test** your contribution (eg from the `.../pyGAM`):
```py.test -s```
- When you are happy with your changes, make a **pull request** into the `master` branch of the main project.
## About
Generalized Additive Models (GAMs) are smooth semi-parametric models of the form:
![alt tag](http://latex.codecogs.com/svg.latex?g\(\mathbb{E}\[y|X\]\)=\beta_0+f_1(X_1)+f_2(X_2)+\dots+f_p(X_p))
where `X.T = [X_1, X_2, ..., X_p]` are independent variables, `y` is the dependent variable, and `g()` is the link function that relates our predictor variables to the expected value of the dependent variable.
The feature functions `f_i()` are built using **penalized B splines**, which allow us to **automatically model non-linear relationships** without having to manually try out many different transformations on each variable.
<img src=imgs/pygam_basis.png>
GAMs extend generalized linear models by allowing non-linear functions of features while maintaining additivity. Since the model is additive, it is easy to examine the effect of each `X_i` on `Y` individually while holding all other predictors constant.
The result is a very flexible model, where it is easy to incorporate prior knowledge and control overfitting.
## Citing pyGAM
Please consider citing pyGAM if it has helped you in your research or work:
Daniel Servén, & Charlie Brummitt. (2018, March 27). pyGAM: Generalized Additive Models in Python. Zenodo. [DOI: 10.5281/zenodo.1208723](http://doi.org/10.5281/zenodo.1208723)
BibTex:
```
@misc{daniel\_serven\_2018_1208723,
  author       = {Daniel Servén and
                  Charlie Brummitt},
  title        = {pyGAM: Generalized Additive Models in Python},
  month        = mar,
  year         = 2018,
  doi          = {10.5281/zenodo.1208723},
  url          = {https://doi.org/10.5281/zenodo.1208723}
}
```
## References
1. Simon N. Wood, 2006  
Generalized Additive Models: an introduction with R
0. Hastie, Tibshirani, Friedman  
The Elements of Statistical Learning  
http://statweb.stanford.edu/~tibs/ElemStatLearn/printings/ESLII_print10.pdf  
0. James, Witten, Hastie and Tibshirani  
An Introduction to Statistical Learning  
http://www-bcf.usc.edu/~gareth/ISL/ISLR%20Sixth%20Printing.pdf  
0. Paul Eilers & Brian Marx, 1996
Flexible Smoothing with B-splines and Penalties
http://www.stat.washington.edu/courses/stat527/s13/readings/EilersMarx_StatSci_1996.pdf
0. Kim Larsen, 2015  
GAM: The Predictive Modeling Silver Bullet  
http://multithreaded.stitchfix.com/assets/files/gam.pdf  
0. Deva Ramanan, 2008  
UCI Machine Learning: Notes on IRLS  
http://www.ics.uci.edu/~dramanan/teaching/ics273a_winter08/homework/irls_notes.pdf  
0. Paul Eilers & Brian Marx, 2015  
International Biometric Society: A Crash Course on P-splines  
http://www.ibschannel2015.nl/project/userfiles/Crash_course_handout.pdf
0. Keiding, Niels, 1991  
Age-specific incidence and prevalence: a statistical perspective
<!---http://www.cs.princeton.edu/courses/archive/fall11/cos323/notes/cos323_f11_lecture09_svd.pdf--->
<!---http://www.stats.uwo.ca/faculty/braun/ss3859/notes/Chapter4/ch4.pdf--->
<!---http://www.stat.berkeley.edu/~census/mlesan.pdf--->
<!---http://web.mit.edu/hyperbook/Patrikalakis-Maekawa-Cho/node17.html---> <!--- this helped me get spline gradients--->
<!---https://scikit-sparse.readthedocs.io/en/latest/overview.html#developers--->
<!---https://vincentarelbundock.github.io/Rdatasets/datasets.html---> <!--- R Datasets!--->

%package help
Summary:	Development documents and examples for pygam
Provides:	python3-pygam-doc
%description help
## Installation
```pip install pygam```
### scikit-sparse
To speed up optimization on large models with constraints, it helps to have `scikit-sparse` installed because it contains a slightly faster, sparse version of Cholesky factorization. The import from `scikit-sparse` references `nose`, so you'll need that too.
The easiest way is to use Conda:  
```conda install -c conda-forge scikit-sparse nose```
[scikit-sparse docs](http://pythonhosted.org/scikit-sparse/overview.html#download)
## Contributing - HELP REQUESTED
Contributions are most welcome!
You can help pyGAM in many ways including:
- Working on a [known bug](https://github.com/dswah/pyGAM/labels/bug).
- Trying it out and reporting bugs or what was difficult.
- Helping improve the documentation.
- Writing new [distributions](https://github.com/dswah/pyGAM/blob/master/pygam/distributions.py), and [link functions](https://github.com/dswah/pyGAM/blob/master/pygam/links.py).
- If you need some ideas, please take a look at the [issues](https://github.com/dswah/pyGAM/issues).
To start:
- **fork the project** and cut a new branch
- Now **install** the testing **dependencies**
```
conda install pytest numpy pandas scipy pytest-cov cython
pip install --upgrade pip
pip install -r requirements.txt
```
It helps to add a **sym-link** of the forked project to your **python path**. To do this, you should **install [flit](http://flit.readthedocs.io/en/latest/index.html)**:
- ```pip install flit```
- Then from main project folder (ie `.../pyGAM`) do:
```flit install -s```
Make some changes and write a test...
- **Test** your contribution (eg from the `.../pyGAM`):
```py.test -s```
- When you are happy with your changes, make a **pull request** into the `master` branch of the main project.
## About
Generalized Additive Models (GAMs) are smooth semi-parametric models of the form:
![alt tag](http://latex.codecogs.com/svg.latex?g\(\mathbb{E}\[y|X\]\)=\beta_0+f_1(X_1)+f_2(X_2)+\dots+f_p(X_p))
where `X.T = [X_1, X_2, ..., X_p]` are independent variables, `y` is the dependent variable, and `g()` is the link function that relates our predictor variables to the expected value of the dependent variable.
The feature functions `f_i()` are built using **penalized B splines**, which allow us to **automatically model non-linear relationships** without having to manually try out many different transformations on each variable.
<img src=imgs/pygam_basis.png>
GAMs extend generalized linear models by allowing non-linear functions of features while maintaining additivity. Since the model is additive, it is easy to examine the effect of each `X_i` on `Y` individually while holding all other predictors constant.
The result is a very flexible model, where it is easy to incorporate prior knowledge and control overfitting.
## Citing pyGAM
Please consider citing pyGAM if it has helped you in your research or work:
Daniel Servén, & Charlie Brummitt. (2018, March 27). pyGAM: Generalized Additive Models in Python. Zenodo. [DOI: 10.5281/zenodo.1208723](http://doi.org/10.5281/zenodo.1208723)
BibTex:
```
@misc{daniel\_serven\_2018_1208723,
  author       = {Daniel Servén and
                  Charlie Brummitt},
  title        = {pyGAM: Generalized Additive Models in Python},
  month        = mar,
  year         = 2018,
  doi          = {10.5281/zenodo.1208723},
  url          = {https://doi.org/10.5281/zenodo.1208723}
}
```
## References
1. Simon N. Wood, 2006  
Generalized Additive Models: an introduction with R
0. Hastie, Tibshirani, Friedman  
The Elements of Statistical Learning  
http://statweb.stanford.edu/~tibs/ElemStatLearn/printings/ESLII_print10.pdf  
0. James, Witten, Hastie and Tibshirani  
An Introduction to Statistical Learning  
http://www-bcf.usc.edu/~gareth/ISL/ISLR%20Sixth%20Printing.pdf  
0. Paul Eilers & Brian Marx, 1996
Flexible Smoothing with B-splines and Penalties
http://www.stat.washington.edu/courses/stat527/s13/readings/EilersMarx_StatSci_1996.pdf
0. Kim Larsen, 2015  
GAM: The Predictive Modeling Silver Bullet  
http://multithreaded.stitchfix.com/assets/files/gam.pdf  
0. Deva Ramanan, 2008  
UCI Machine Learning: Notes on IRLS  
http://www.ics.uci.edu/~dramanan/teaching/ics273a_winter08/homework/irls_notes.pdf  
0. Paul Eilers & Brian Marx, 2015  
International Biometric Society: A Crash Course on P-splines  
http://www.ibschannel2015.nl/project/userfiles/Crash_course_handout.pdf
0. Keiding, Niels, 1991  
Age-specific incidence and prevalence: a statistical perspective
<!---http://www.cs.princeton.edu/courses/archive/fall11/cos323/notes/cos323_f11_lecture09_svd.pdf--->
<!---http://www.stats.uwo.ca/faculty/braun/ss3859/notes/Chapter4/ch4.pdf--->
<!---http://www.stat.berkeley.edu/~census/mlesan.pdf--->
<!---http://web.mit.edu/hyperbook/Patrikalakis-Maekawa-Cho/node17.html---> <!--- this helped me get spline gradients--->
<!---https://scikit-sparse.readthedocs.io/en/latest/overview.html#developers--->
<!---https://vincentarelbundock.github.io/Rdatasets/datasets.html---> <!--- R Datasets!--->

%prep
%autosetup -n pygam-0.9.0

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-pygam -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Mon Apr 10 2023 Python_Bot <Python_Bot@openeuler.org> - 0.9.0-1
- Package Spec generated