1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
|
%global _empty_manifest_terminate_build 0
Name: python-pygna
Version: 3.3.1
Release: 1
Summary: Geneset Network Analysis
License: MIT
URL: https://github.com/stracquadaniolab/pygna
Source0: https://mirrors.aliyun.com/pypi/web/packages/82/63/56e835cd86a4070e90a7d5d6e59bda2eec44cf36393958a2722b685790cb/pygna-3.3.1.tar.gz
BuildArch: noarch
Requires: python3-pandas
Requires: python3-numpy
Requires: python3-scipy
Requires: python3-matplotlib
Requires: python3-pyyaml
Requires: python3-tables
Requires: python3-seaborn
Requires: python3-palettable
Requires: python3-networkx
Requires: python3-statsmodels
Requires: python3-argh
Requires: python3-mygene
%description
# PyGNA: a Python framework for geneset network analysis

[](https://anaconda.org/stracquadaniolab/pygna)


PyGNA is a framework for statistical network analysis of high-throughput experiments. It can
be used both as a standalone command line application or it can be used as API
to develop custom analyses.
For an overview of PyGNA functionalities check the infographic below or dive into our [Getting started](#getting-started) tour.

## Installation
The easiest and fastest way to install `pygna` using `conda`:
$ conda install -c stracquadaniolab -c bioconda -c conda-forge pygna
Alternatively you can install it through `pip`:
$ pip install pygna
We also provide a docker image installation with the latest version of PyGNA.
It can be easily executed from the command line from DockerHub:
$ docker run stracquadaniolab/pygna/pygna:latest
or GitHub Packages:
$ docker run docker.pkg.github.com/stracquadaniolab/pygna/pygna:latest
which will show the PyGNA command line help.
## Getting started
A typical `pygna` analysis consists of 3 steps:
1. Generate the RWR and SP matrices for the network you are using ( once they are generated, you won't need to repeat the same step again)
2. Make sure that the input genesets are in the right format. If a network uses entrez ID, and your file is in HUGO symbols, use the pygna utility for the name conversion.
3. Run the analysis you are interested into.
4. Once you have the output tables, you can choose to visualize one or more plots.
Otherwise you can check our [snakemake workflow](https://github.com/stracquadaniolab/workflow-pygna) for the full geneset analysis;
our workflow contains sample data that you can use to familiarize with our software.
The examples below show some basic analysis that can be carried out with pygna.
### Example 1: Running pygna GNT analysis
Running `pygna` on this input as follows:
$ cd ./your-path/min-working-example/
$ pygna build-rwr-diffusion barabasi.interactome.tsv --output-file interactome_RWR.hdf5
$ pygna test-topology-rwr barabasi.interactome.tsv disgenet_cancer_groups_subset.gmt interactome_RWR.hdf5 table_topology_rwr.csv --number-of-permutations 1000 --cores 4
$ pygna paint-datasets-stats table_topology_rwr.csv barplot_rwr.pdf
You can look at the plot of the results in the `barplot_rwr.pdf` file, and the corresponding table in `table_topology_rwr.csv`.
### Example 2: Running pygna GNA analysis
$ cd ./your-path/min-working-example/
skip this step if the matrix is already computed
$ pygna build-RWR-diffusion barabasi.interactome.tsv --output-file interactome_RWR.hdf5
The association analysis is run N x M times (N number of genesets, M number of pathways), we use only 50 permutations in this example to avoid long computations; however, the recommended value is 1000.
$ pygna test-association-rwr barabasi.interactome.tsv disgenet_cancer_groups_subset.gmt interactome_RWR.hdf5 table_association_rwr.csv -B disgenet_cancer_groups_subset.gmt --keep --number-of-permutations 100 --cores 4
If you don't include the --results-figure flag at the comparison step, plot the matrix as follows
$ pygna paint-comparison-matrix table_association_rwr.csv heatmap_association_rwr.png --rwr --annotate
The -k flag, keeps the -B geneset and permutes only on the set A.
If setname B is not passed, the analysis is run between each couple of setnames in the geneset.
$ pygna test-association-rwr barabasi.interactome.tsv disgenet_cancer_groups_subset.gmt interactome_RWR.hdf5 table_within_comparison_rwr.csv --number-of-permutations 100 --cores 4
$ pygna paint-comparison-matrix table_within_comparison_rwr.csv heatmap_within_comparison_rwr.png --rwr --single-geneset
You can look at the plot of the results in the `heatmap_within_comparison_rwr.png` file, and the corresponding table in `table_within_comparison_rwr.csv`.
## Documentation
The official documentation for `pygna` can be found on [readthedocs](https://pygna.readthedocs.io/).
## Authors
- Viola Fanfani (v.fanfani@sms.ed.ac.uk): lead developer and mantainer.
- Fabio Cassano (fabio.cassano@ed.ac.uk): support.
- Giovanni Stracquadanio (giovanni.stracquadanio@ed.ac.uk): corresponding author.
## Citation
V. Fanfani, F. Cassano, and G. Stracquadanio, “PyGNA: a unified framework for geneset network analysis,” BMC Bioinformatics, vol. 21, no. 1, 2020.
DOI: https://doi.org/10.1186/s12859-020-03801-1
```
@article{Fanfani2020,
author = {Fanfani, Viola and Cassano, Fabio and Stracquadanio, Giovanni},
doi = {10.1186/s12859-020-03801-1},
issn = {14712105},
journal = {BMC Bioinformatics},
number = {1},
pmid = {33092528},
title = {{PyGNA: a unified framework for geneset network analysis}},
volume = {21},
year = {2020}
}
```
## Issues
Please post an issue to report a bug or request new features.
%package -n python3-pygna
Summary: Geneset Network Analysis
Provides: python-pygna
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-pygna
# PyGNA: a Python framework for geneset network analysis

[](https://anaconda.org/stracquadaniolab/pygna)


PyGNA is a framework for statistical network analysis of high-throughput experiments. It can
be used both as a standalone command line application or it can be used as API
to develop custom analyses.
For an overview of PyGNA functionalities check the infographic below or dive into our [Getting started](#getting-started) tour.

## Installation
The easiest and fastest way to install `pygna` using `conda`:
$ conda install -c stracquadaniolab -c bioconda -c conda-forge pygna
Alternatively you can install it through `pip`:
$ pip install pygna
We also provide a docker image installation with the latest version of PyGNA.
It can be easily executed from the command line from DockerHub:
$ docker run stracquadaniolab/pygna/pygna:latest
or GitHub Packages:
$ docker run docker.pkg.github.com/stracquadaniolab/pygna/pygna:latest
which will show the PyGNA command line help.
## Getting started
A typical `pygna` analysis consists of 3 steps:
1. Generate the RWR and SP matrices for the network you are using ( once they are generated, you won't need to repeat the same step again)
2. Make sure that the input genesets are in the right format. If a network uses entrez ID, and your file is in HUGO symbols, use the pygna utility for the name conversion.
3. Run the analysis you are interested into.
4. Once you have the output tables, you can choose to visualize one or more plots.
Otherwise you can check our [snakemake workflow](https://github.com/stracquadaniolab/workflow-pygna) for the full geneset analysis;
our workflow contains sample data that you can use to familiarize with our software.
The examples below show some basic analysis that can be carried out with pygna.
### Example 1: Running pygna GNT analysis
Running `pygna` on this input as follows:
$ cd ./your-path/min-working-example/
$ pygna build-rwr-diffusion barabasi.interactome.tsv --output-file interactome_RWR.hdf5
$ pygna test-topology-rwr barabasi.interactome.tsv disgenet_cancer_groups_subset.gmt interactome_RWR.hdf5 table_topology_rwr.csv --number-of-permutations 1000 --cores 4
$ pygna paint-datasets-stats table_topology_rwr.csv barplot_rwr.pdf
You can look at the plot of the results in the `barplot_rwr.pdf` file, and the corresponding table in `table_topology_rwr.csv`.
### Example 2: Running pygna GNA analysis
$ cd ./your-path/min-working-example/
skip this step if the matrix is already computed
$ pygna build-RWR-diffusion barabasi.interactome.tsv --output-file interactome_RWR.hdf5
The association analysis is run N x M times (N number of genesets, M number of pathways), we use only 50 permutations in this example to avoid long computations; however, the recommended value is 1000.
$ pygna test-association-rwr barabasi.interactome.tsv disgenet_cancer_groups_subset.gmt interactome_RWR.hdf5 table_association_rwr.csv -B disgenet_cancer_groups_subset.gmt --keep --number-of-permutations 100 --cores 4
If you don't include the --results-figure flag at the comparison step, plot the matrix as follows
$ pygna paint-comparison-matrix table_association_rwr.csv heatmap_association_rwr.png --rwr --annotate
The -k flag, keeps the -B geneset and permutes only on the set A.
If setname B is not passed, the analysis is run between each couple of setnames in the geneset.
$ pygna test-association-rwr barabasi.interactome.tsv disgenet_cancer_groups_subset.gmt interactome_RWR.hdf5 table_within_comparison_rwr.csv --number-of-permutations 100 --cores 4
$ pygna paint-comparison-matrix table_within_comparison_rwr.csv heatmap_within_comparison_rwr.png --rwr --single-geneset
You can look at the plot of the results in the `heatmap_within_comparison_rwr.png` file, and the corresponding table in `table_within_comparison_rwr.csv`.
## Documentation
The official documentation for `pygna` can be found on [readthedocs](https://pygna.readthedocs.io/).
## Authors
- Viola Fanfani (v.fanfani@sms.ed.ac.uk): lead developer and mantainer.
- Fabio Cassano (fabio.cassano@ed.ac.uk): support.
- Giovanni Stracquadanio (giovanni.stracquadanio@ed.ac.uk): corresponding author.
## Citation
V. Fanfani, F. Cassano, and G. Stracquadanio, “PyGNA: a unified framework for geneset network analysis,” BMC Bioinformatics, vol. 21, no. 1, 2020.
DOI: https://doi.org/10.1186/s12859-020-03801-1
```
@article{Fanfani2020,
author = {Fanfani, Viola and Cassano, Fabio and Stracquadanio, Giovanni},
doi = {10.1186/s12859-020-03801-1},
issn = {14712105},
journal = {BMC Bioinformatics},
number = {1},
pmid = {33092528},
title = {{PyGNA: a unified framework for geneset network analysis}},
volume = {21},
year = {2020}
}
```
## Issues
Please post an issue to report a bug or request new features.
%package help
Summary: Development documents and examples for pygna
Provides: python3-pygna-doc
%description help
# PyGNA: a Python framework for geneset network analysis

[](https://anaconda.org/stracquadaniolab/pygna)


PyGNA is a framework for statistical network analysis of high-throughput experiments. It can
be used both as a standalone command line application or it can be used as API
to develop custom analyses.
For an overview of PyGNA functionalities check the infographic below or dive into our [Getting started](#getting-started) tour.

## Installation
The easiest and fastest way to install `pygna` using `conda`:
$ conda install -c stracquadaniolab -c bioconda -c conda-forge pygna
Alternatively you can install it through `pip`:
$ pip install pygna
We also provide a docker image installation with the latest version of PyGNA.
It can be easily executed from the command line from DockerHub:
$ docker run stracquadaniolab/pygna/pygna:latest
or GitHub Packages:
$ docker run docker.pkg.github.com/stracquadaniolab/pygna/pygna:latest
which will show the PyGNA command line help.
## Getting started
A typical `pygna` analysis consists of 3 steps:
1. Generate the RWR and SP matrices for the network you are using ( once they are generated, you won't need to repeat the same step again)
2. Make sure that the input genesets are in the right format. If a network uses entrez ID, and your file is in HUGO symbols, use the pygna utility for the name conversion.
3. Run the analysis you are interested into.
4. Once you have the output tables, you can choose to visualize one or more plots.
Otherwise you can check our [snakemake workflow](https://github.com/stracquadaniolab/workflow-pygna) for the full geneset analysis;
our workflow contains sample data that you can use to familiarize with our software.
The examples below show some basic analysis that can be carried out with pygna.
### Example 1: Running pygna GNT analysis
Running `pygna` on this input as follows:
$ cd ./your-path/min-working-example/
$ pygna build-rwr-diffusion barabasi.interactome.tsv --output-file interactome_RWR.hdf5
$ pygna test-topology-rwr barabasi.interactome.tsv disgenet_cancer_groups_subset.gmt interactome_RWR.hdf5 table_topology_rwr.csv --number-of-permutations 1000 --cores 4
$ pygna paint-datasets-stats table_topology_rwr.csv barplot_rwr.pdf
You can look at the plot of the results in the `barplot_rwr.pdf` file, and the corresponding table in `table_topology_rwr.csv`.
### Example 2: Running pygna GNA analysis
$ cd ./your-path/min-working-example/
skip this step if the matrix is already computed
$ pygna build-RWR-diffusion barabasi.interactome.tsv --output-file interactome_RWR.hdf5
The association analysis is run N x M times (N number of genesets, M number of pathways), we use only 50 permutations in this example to avoid long computations; however, the recommended value is 1000.
$ pygna test-association-rwr barabasi.interactome.tsv disgenet_cancer_groups_subset.gmt interactome_RWR.hdf5 table_association_rwr.csv -B disgenet_cancer_groups_subset.gmt --keep --number-of-permutations 100 --cores 4
If you don't include the --results-figure flag at the comparison step, plot the matrix as follows
$ pygna paint-comparison-matrix table_association_rwr.csv heatmap_association_rwr.png --rwr --annotate
The -k flag, keeps the -B geneset and permutes only on the set A.
If setname B is not passed, the analysis is run between each couple of setnames in the geneset.
$ pygna test-association-rwr barabasi.interactome.tsv disgenet_cancer_groups_subset.gmt interactome_RWR.hdf5 table_within_comparison_rwr.csv --number-of-permutations 100 --cores 4
$ pygna paint-comparison-matrix table_within_comparison_rwr.csv heatmap_within_comparison_rwr.png --rwr --single-geneset
You can look at the plot of the results in the `heatmap_within_comparison_rwr.png` file, and the corresponding table in `table_within_comparison_rwr.csv`.
## Documentation
The official documentation for `pygna` can be found on [readthedocs](https://pygna.readthedocs.io/).
## Authors
- Viola Fanfani (v.fanfani@sms.ed.ac.uk): lead developer and mantainer.
- Fabio Cassano (fabio.cassano@ed.ac.uk): support.
- Giovanni Stracquadanio (giovanni.stracquadanio@ed.ac.uk): corresponding author.
## Citation
V. Fanfani, F. Cassano, and G. Stracquadanio, “PyGNA: a unified framework for geneset network analysis,” BMC Bioinformatics, vol. 21, no. 1, 2020.
DOI: https://doi.org/10.1186/s12859-020-03801-1
```
@article{Fanfani2020,
author = {Fanfani, Viola and Cassano, Fabio and Stracquadanio, Giovanni},
doi = {10.1186/s12859-020-03801-1},
issn = {14712105},
journal = {BMC Bioinformatics},
number = {1},
pmid = {33092528},
title = {{PyGNA: a unified framework for geneset network analysis}},
volume = {21},
year = {2020}
}
```
## Issues
Please post an issue to report a bug or request new features.
%prep
%autosetup -n pygna-3.3.1
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "\"/%h/%f.gz\"\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-pygna -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Tue Jun 20 2023 Python_Bot <Python_Bot@openeuler.org> - 3.3.1-1
- Package Spec generated
|