1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
|
%global _empty_manifest_terminate_build 0
Name: python-pyGSTi
Version: 0.9.11.1
Release: 1
Summary: A python implementation of Gate Set Tomography
License: Apache Software License
URL: http://www.pygsti.info
Source0: https://mirrors.aliyun.com/pypi/web/packages/f1/72/d06ffb67afd521b0d3c57ec762ebb372236d9794d5f7e818ecefa797297e/pyGSTi-0.9.11.1.tar.gz
Requires: python3-numpy
Requires: python3-scipy
Requires: python3-plotly
Requires: python3-pandas
Requires: python3-ipython
Requires: python3-cirq
Requires: python3-ply
Requires: python3-pytest
Requires: python3-flake8
Requires: python3-pandas
Requires: python3-matplotlib
Requires: python3-qibo
Requires: python3-nbval
Requires: python3-cvxopt
Requires: python3-psutil
Requires: python3-pytest-xdist
Requires: python3-csaps
Requires: python3-pymongo
Requires: python3-cvxopt
Requires: python3-autopep8
Requires: python3-notebook
Requires: python3-cvxpy
Requires: python3-jinja2
Requires: python3-MarkupSafe
Requires: python3-seaborn
Requires: python3-zmq
Requires: python3-nose
Requires: python3-mpi4py
Requires: python3-msgpack
Requires: python3-cython
Requires: python3-packaging
Requires: python3-pytest-cov
Requires: python3-deap
Requires: python3-cvxopt
Requires: python3-cvxpy
Requires: python3-deap
Requires: python3-cython
Requires: python3-jinja2
Requires: python3-MarkupSafe
Requires: python3-csaps
Requires: python3-autopep8
Requires: python3-flake8
Requires: python3-psutil
Requires: python3-pymongo
Requires: python3-msgpack
Requires: python3-mpi4py
Requires: python3-ipython
Requires: python3-cirq
Requires: python3-ply
Requires: python3-pytest
Requires: python3-flake8
Requires: python3-pandas
Requires: python3-matplotlib
Requires: python3-qibo
Requires: python3-nbval
Requires: python3-cvxopt
Requires: python3-psutil
Requires: python3-pytest-xdist
Requires: python3-csaps
Requires: python3-pymongo
Requires: python3-cvxopt
Requires: python3-autopep8
Requires: python3-notebook
Requires: python3-cvxpy
Requires: python3-jinja2
Requires: python3-MarkupSafe
Requires: python3-seaborn
Requires: python3-zmq
Requires: python3-nose
Requires: python3-msgpack
Requires: python3-cython
Requires: python3-packaging
Requires: python3-pytest-cov
Requires: python3-deap
Requires: python3-ipython
Requires: python3-notebook
Requires: python3-matplotlib
Requires: python3-pandas
Requires: python3-pytest
Requires: python3-pytest-xdist
Requires: python3-pytest-cov
Requires: python3-nbval
Requires: python3-nose
Requires: python3-csaps
Requires: python3-cvxopt
Requires: python3-cvxpy
Requires: python3-cython
Requires: python3-matplotlib
Requires: python3-mpi4py
Requires: python3-msgpack
Requires: python3-packaging
Requires: python3-pandas
Requires: python3-psutil
Requires: python3-zmq
Requires: python3-jinja2
Requires: python3-seaborn
Requires: python3-ply
Requires: python3-qibo
Requires: python3-cirq
Requires: python3-notebook
Requires: python3-ipython
%description
Gate set tomography (GST) is a quantum tomography protocol that provides full characterization of a quantum logic device
(e.g. a qubit). GST estimates a set of quantum logic gates and (simultaneously) the associated state preparation and
measurement (SPAM) operations. GST is self-calibrating. This eliminates a key limitation of traditional quantum state
and process tomography, which characterize either states (assuming perfect processes) or processes (assuming perfect
state preparation and measurement), but not both together. Compared with benchmarking protocols such as randomized
benchmarking, GST provides much more detailed and accurate information about the gates, but demands more data. The
primary downside of GST has been its complexity. Whereas benchmarking and state/process tomography data can be analyzed
with relatively simple algorithms, GST requires more complex algorithms and more fine-tuning (linear GST is an exception
that can be implemented easily). pyGSTi addresses and eliminates this obstacle by providing a fully-featured, publicly
available implementation of GST in the Python programming language.
The primary goals of the pyGSTi project are to:
- provide efficient and robust implementations of Gate Set Tomography algorithms;
- allow straightforward interoperability with other software;
- provide a powerful high-level interface suited to inexperienced programmers, so that
common GST tasks can be performed using just one or two lines of code;
- use modular design to make it easy for users to modify, customize, and extend GST functionality.
%package -n python3-pyGSTi
Summary: A python implementation of Gate Set Tomography
Provides: python-pyGSTi
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
BuildRequires: python3-cffi
BuildRequires: gcc
BuildRequires: gdb
%description -n python3-pyGSTi
Gate set tomography (GST) is a quantum tomography protocol that provides full characterization of a quantum logic device
(e.g. a qubit). GST estimates a set of quantum logic gates and (simultaneously) the associated state preparation and
measurement (SPAM) operations. GST is self-calibrating. This eliminates a key limitation of traditional quantum state
and process tomography, which characterize either states (assuming perfect processes) or processes (assuming perfect
state preparation and measurement), but not both together. Compared with benchmarking protocols such as randomized
benchmarking, GST provides much more detailed and accurate information about the gates, but demands more data. The
primary downside of GST has been its complexity. Whereas benchmarking and state/process tomography data can be analyzed
with relatively simple algorithms, GST requires more complex algorithms and more fine-tuning (linear GST is an exception
that can be implemented easily). pyGSTi addresses and eliminates this obstacle by providing a fully-featured, publicly
available implementation of GST in the Python programming language.
The primary goals of the pyGSTi project are to:
- provide efficient and robust implementations of Gate Set Tomography algorithms;
- allow straightforward interoperability with other software;
- provide a powerful high-level interface suited to inexperienced programmers, so that
common GST tasks can be performed using just one or two lines of code;
- use modular design to make it easy for users to modify, customize, and extend GST functionality.
%package help
Summary: Development documents and examples for pyGSTi
Provides: python3-pyGSTi-doc
%description help
Gate set tomography (GST) is a quantum tomography protocol that provides full characterization of a quantum logic device
(e.g. a qubit). GST estimates a set of quantum logic gates and (simultaneously) the associated state preparation and
measurement (SPAM) operations. GST is self-calibrating. This eliminates a key limitation of traditional quantum state
and process tomography, which characterize either states (assuming perfect processes) or processes (assuming perfect
state preparation and measurement), but not both together. Compared with benchmarking protocols such as randomized
benchmarking, GST provides much more detailed and accurate information about the gates, but demands more data. The
primary downside of GST has been its complexity. Whereas benchmarking and state/process tomography data can be analyzed
with relatively simple algorithms, GST requires more complex algorithms and more fine-tuning (linear GST is an exception
that can be implemented easily). pyGSTi addresses and eliminates this obstacle by providing a fully-featured, publicly
available implementation of GST in the Python programming language.
The primary goals of the pyGSTi project are to:
- provide efficient and robust implementations of Gate Set Tomography algorithms;
- allow straightforward interoperability with other software;
- provide a powerful high-level interface suited to inexperienced programmers, so that
common GST tasks can be performed using just one or two lines of code;
- use modular design to make it easy for users to modify, customize, and extend GST functionality.
%prep
%autosetup -n pyGSTi-0.9.11.1
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "\"/%h/%f.gz\"\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-pyGSTi -f filelist.lst
%dir %{python3_sitearch}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Fri Jun 09 2023 Python_Bot <Python_Bot@openeuler.org> - 0.9.11.1-1
- Package Spec generated
|