1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
|
%global _empty_manifest_terminate_build 0
Name: python-pyoptimus
Version: 23.5.0b0
Release: 1
Summary: Optimus is the missing framework for cleaning and pre-processing data in a distributed fashion.
License: APACHE
URL: https://github.com/hi-primus/optimus/
Source0: https://mirrors.nju.edu.cn/pypi/web/packages/4e/74/09cc31d0598263899d35084eafd5804de42f9bfbb516647f754433ed1006/pyoptimus-23.5.0b0.tar.gz
BuildArch: noarch
Requires: python3-pandas
Requires: python3-numpy
Requires: python3-nltk
Requires: python3-requests
Requires: python3-fastnumbers
Requires: python3-setuptools
Requires: python3-Jinja2
Requires: python3-humanize
Requires: python3-deepdiff
Requires: python3-glom
Requires: python3-statsmodels
Requires: python3-fast-histogram
Requires: python3-rply
Requires: python3-tabulate
Requires: python3-matplotlib
Requires: python3-seaborn
Requires: python3-jellyfish
Requires: python3-Metaphone
Requires: python3-num2words
Requires: python3-hi-dateinfer
Requires: python3-hi-urlparser
Requires: python3-yellowbrick
Requires: python3-openpyxl
Requires: python3-xlrd
Requires: python3-fastavro
Requires: python3-pandavro
Requires: python3-pybigquery
Requires: python3-snappy
Requires: python3-s3fs
Requires: python3-aiobotocore[boto3]
Requires: python3-tensorflow
Requires: python3-keras
Requires: python3-nltk
Requires: python3-pyspark
Requires: python3-findspark
Requires: python3-koalas
Requires: python3-pandas
Requires: python3-dask[complete]
Requires: python3-distributed
Requires: python3-dask-ml
Requires: python3-pyarrow
Requires: python3-coiled
Requires: python3-psutil
Requires: python3-vaex
Requires: python3-gputil
Requires: python3-numpy
Requires: python3-tensorflow
Requires: python3-keras
Requires: python3-nltk
Requires: python3-sqlalchemy
Requires: python3-flask
Requires: python3-flask
Requires: python3-gputil
Requires: python3-numpy
Requires: python3-distributed
Requires: python3-dask[complete]
Requires: python3-dask[complete]
Requires: python3-distributed
Requires: python3-dask-ml
Requires: python3-pyarrow
Requires: python3-coiled
Requires: python3-psutil
Requires: python3-sqlalchemy
Requires: python3-sphinx
Requires: python3-pytest
Requires: python3-mock
Requires: python3-nose
Requires: python3-pep8
Requires: python3-pyflakes
Requires: python3-pandas
Requires: python3-pyspark
Requires: python3-findspark
Requires: python3-koalas
Requires: python3-pytest
Requires: python3-mock
Requires: python3-nose
Requires: python3-vaex
%description
# Optimus
[](https://hi-optimus.com)
[](https://github.com/hi-primus/optimus/actions/workflows/main.yml)
[](https://hub.docker.com/r/hiprimus/optimus)
[](https://pypi.org/project/pyoptimus/)
[](https://github.com/hi-primus/optimus/releases)
[](http://calver.org)
[](https://pepy.tech/project/pyoptimus)
[](https://pepy.tech/project/pyoptimus/month)
[](https://pepy.tech/project/pyoptimus/week)
[](https://github.com/bulutyazilim/awesome-datascience)
[](https://communityinviter.com/apps/hi-bumblebee/welcome)
# Overview
Optimus is an opinionated python library to easily load, process, plot and create ML models that run over pandas, Dask, cuDF, dask-cuDF, Vaex or Spark.
Some amazing things Optimus can do for you:
* Process using a simple API, making it easy to use for newcomers.
* More than 100 functions to handle strings, process dates, urls and emails.
* Easily plot data from any size.
* Out of box functions to explore and fix data quality.
* Use the same code to process your data in your laptop or in a remote cluster of GPUs.
[See Documentation](https://docs.hi-optimus.com/en/latest/)
## Try Optimus
To launch a live notebook server to test optimus using binder or Colab, click on one of the following badges:
[](https://mybinder.org/v2/gh/hi-primus/optimus/develop-23.5?filepath=https%3A%2F%2Fraw.githubusercontent.com%2Fhi-primus%2Foptimus%2Fdevelop-23.5%2Fexamples%2F10_min_to_optimus.ipynb)
[](https://colab.research.google.com/github/hi-primus/optimus/blob/master/examples/10_min_to_optimus_colab.ipynb)
## Installation (pip):
In your terminal just type:
```
pip install pyoptimus
```
By default Optimus install Pandas as the default engine, to install other engines you can use the following commands:
| Engine | Command |
|-----------|----------------------------------------|
| Dask | ```pip install pyoptimus[dask]``` |
| cuDF | ```pip install pyoptimus[cudf]``` |
| Dask-cuDF | ```pip install pyoptimus[dask-cudf]``` |
| Vaex | ```pip install pyoptimus[vaex]``` |
| Spark | ```pip install pyoptimus[spark]``` |
To install from the repo:
```
pip install git+https://github.com/hi-primus/optimus.git@develop-23.5
```
To install other engines:
```
pip install git+https://github.com/hi-primus/optimus.git@develop-23.5#egg=pyoptimus[dask]
```
### Requirements
* Python 3.7 or 3.8
## Examples
You can go to [10 minutes to Optimus](https://github.com/hi-primus/optimus/blob/develop-23.5/examples/10_min_to_optimus.ipynb) where you can find the basics to start working in a notebook.
Also you can go to the [Examples](https://github.com/hi-primus/optimus/tree/develop-23.5/examples/examples.md) section and find specific notebooks about data cleaning, data munging, profiling, data enrichment and how to create ML and DL models.
Here's a handy [Cheat Sheet](https://htmlpreview.github.io/?https://github.com/hi-primus/optimus/blob/develop-23.5/docs/cheatsheet/optimus_cheat_sheet.html) with the most common Optimus' operations.
## Start Optimus
Start Optimus using ```"pandas"```, ```"dask"```, ```"cudf"```,```"dask_cudf"```,```"vaex"``` or ```"spark"```.
```python
from optimus import Optimus
op = Optimus("pandas")
```
## Loading data
Now Optimus can load data in csv, json, parquet, avro and excel formats from a local file or from a URL.
```python
#csv
df = op.load.csv("../examples/data/foo.csv")
#json
df = op.load.json("../examples/data/foo.json")
# using a url
df = op.load.json("https://raw.githubusercontent.com/hi-primus/optimus/develop-23.5/examples/data/foo.json")
# parquet
df = op.load.parquet("../examples/data/foo.parquet")
# ...or anything else
df = op.load.file("../examples/data/titanic3.xls")
```
Also, you can load data from Oracle, Redshift, MySQL and Postgres databases.
## Saving Data
```python
#csv
df.save.csv("data/foo.csv")
# json
df.save.json("data/foo.json")
# parquet
df.save.parquet("data/foo.parquet")
```
You can also save data to oracle, redshift, mysql and postgres.
## Create dataframes
Also, you can create a dataframe from scratch
```python
df = op.create.dataframe({
'A': ['a', 'b', 'c', 'd'],
'B': [1, 3, 5, 7],
'C': [2, 4, 6, None],
'D': ['1980/04/10', '1980/04/10', '1980/04/10', '1980/04/10']
})
```
Using `display` you have a beautiful way to show your data with extra information like column number, column data type and marked white spaces.
```python
display(df)
```

## Cleaning and Processing
Optimus was created to make data cleaning a breeze. The API was designed to be super easy to newcomers and very familiar for people that comes from Pandas.
Optimus expands the standard DataFrame functionality adding `.rows` and `.cols` accessors.
For example you can load data from a url, transform and apply some predefined cleaning functions:
```python
new_df = df\
.rows.sort("rank", "desc")\
.cols.lower(["names", "function"])\
.cols.date_format("date arrival", "yyyy/MM/dd", "dd-MM-YYYY")\
.cols.years_between("date arrival", "dd-MM-YYYY", output_cols="from arrival")\
.cols.normalize_chars("names")\
.cols.remove_special_chars("names")\
.rows.drop(df["rank"]>8)\
.cols.rename("*", str.lower)\
.cols.trim("*")\
.cols.unnest("japanese name", output_cols="other names")\
.cols.unnest("last position seen", separator=",", output_cols="pos")\
.cols.drop(["last position seen", "japanese name", "date arrival", "cybertronian", "nulltype"])
```
# Need help? 🛠️
## Feedback
Feedback is what drive Optimus future, so please take a couple of minutes to help shape the Optimus' Roadmap: http://bit.ly/optimus_survey
Also if you want to a suggestion or feature request use https://github.com/hi-primus/optimus/issues
## Troubleshooting
If you have issues, see our [Troubleshooting Guide](https://github.com/hi-primus/optimus/tree/develop-23.5/troubleshooting.md)
# Contributing to Optimus 💡
Contributions go far beyond pull requests and commits. We are very happy to receive any kind of contributions
including:
* [Documentation](https://docs.hi-optimus.com/en/latest/) updates, enhancements, designs, or bugfixes.
* Spelling or grammar fixes.
* README.md corrections or redesigns.
* Adding unit, or functional [tests](https://github.com/hi-primus/optimus/tree/develop-23.5/tests)
* Triaging GitHub issues -- especially determining whether an issue still persists or is reproducible.
* [Blogging, speaking about, or creating tutorials](https://hioptimus.com/category/blog/) about Optimus and its many features.
* Helping others on our official chats
# Backers and Sponsors
Become a [backer](https://opencollective.com/optimus#backer) or a [sponsor](https://opencollective.com/optimus#sponsor) and get your image on our README on Github with a link to your site.
[](#backers) [](#sponsors)
%package -n python3-pyoptimus
Summary: Optimus is the missing framework for cleaning and pre-processing data in a distributed fashion.
Provides: python-pyoptimus
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-pyoptimus
# Optimus
[](https://hi-optimus.com)
[](https://github.com/hi-primus/optimus/actions/workflows/main.yml)
[](https://hub.docker.com/r/hiprimus/optimus)
[](https://pypi.org/project/pyoptimus/)
[](https://github.com/hi-primus/optimus/releases)
[](http://calver.org)
[](https://pepy.tech/project/pyoptimus)
[](https://pepy.tech/project/pyoptimus/month)
[](https://pepy.tech/project/pyoptimus/week)
[](https://github.com/bulutyazilim/awesome-datascience)
[](https://communityinviter.com/apps/hi-bumblebee/welcome)
# Overview
Optimus is an opinionated python library to easily load, process, plot and create ML models that run over pandas, Dask, cuDF, dask-cuDF, Vaex or Spark.
Some amazing things Optimus can do for you:
* Process using a simple API, making it easy to use for newcomers.
* More than 100 functions to handle strings, process dates, urls and emails.
* Easily plot data from any size.
* Out of box functions to explore and fix data quality.
* Use the same code to process your data in your laptop or in a remote cluster of GPUs.
[See Documentation](https://docs.hi-optimus.com/en/latest/)
## Try Optimus
To launch a live notebook server to test optimus using binder or Colab, click on one of the following badges:
[](https://mybinder.org/v2/gh/hi-primus/optimus/develop-23.5?filepath=https%3A%2F%2Fraw.githubusercontent.com%2Fhi-primus%2Foptimus%2Fdevelop-23.5%2Fexamples%2F10_min_to_optimus.ipynb)
[](https://colab.research.google.com/github/hi-primus/optimus/blob/master/examples/10_min_to_optimus_colab.ipynb)
## Installation (pip):
In your terminal just type:
```
pip install pyoptimus
```
By default Optimus install Pandas as the default engine, to install other engines you can use the following commands:
| Engine | Command |
|-----------|----------------------------------------|
| Dask | ```pip install pyoptimus[dask]``` |
| cuDF | ```pip install pyoptimus[cudf]``` |
| Dask-cuDF | ```pip install pyoptimus[dask-cudf]``` |
| Vaex | ```pip install pyoptimus[vaex]``` |
| Spark | ```pip install pyoptimus[spark]``` |
To install from the repo:
```
pip install git+https://github.com/hi-primus/optimus.git@develop-23.5
```
To install other engines:
```
pip install git+https://github.com/hi-primus/optimus.git@develop-23.5#egg=pyoptimus[dask]
```
### Requirements
* Python 3.7 or 3.8
## Examples
You can go to [10 minutes to Optimus](https://github.com/hi-primus/optimus/blob/develop-23.5/examples/10_min_to_optimus.ipynb) where you can find the basics to start working in a notebook.
Also you can go to the [Examples](https://github.com/hi-primus/optimus/tree/develop-23.5/examples/examples.md) section and find specific notebooks about data cleaning, data munging, profiling, data enrichment and how to create ML and DL models.
Here's a handy [Cheat Sheet](https://htmlpreview.github.io/?https://github.com/hi-primus/optimus/blob/develop-23.5/docs/cheatsheet/optimus_cheat_sheet.html) with the most common Optimus' operations.
## Start Optimus
Start Optimus using ```"pandas"```, ```"dask"```, ```"cudf"```,```"dask_cudf"```,```"vaex"``` or ```"spark"```.
```python
from optimus import Optimus
op = Optimus("pandas")
```
## Loading data
Now Optimus can load data in csv, json, parquet, avro and excel formats from a local file or from a URL.
```python
#csv
df = op.load.csv("../examples/data/foo.csv")
#json
df = op.load.json("../examples/data/foo.json")
# using a url
df = op.load.json("https://raw.githubusercontent.com/hi-primus/optimus/develop-23.5/examples/data/foo.json")
# parquet
df = op.load.parquet("../examples/data/foo.parquet")
# ...or anything else
df = op.load.file("../examples/data/titanic3.xls")
```
Also, you can load data from Oracle, Redshift, MySQL and Postgres databases.
## Saving Data
```python
#csv
df.save.csv("data/foo.csv")
# json
df.save.json("data/foo.json")
# parquet
df.save.parquet("data/foo.parquet")
```
You can also save data to oracle, redshift, mysql and postgres.
## Create dataframes
Also, you can create a dataframe from scratch
```python
df = op.create.dataframe({
'A': ['a', 'b', 'c', 'd'],
'B': [1, 3, 5, 7],
'C': [2, 4, 6, None],
'D': ['1980/04/10', '1980/04/10', '1980/04/10', '1980/04/10']
})
```
Using `display` you have a beautiful way to show your data with extra information like column number, column data type and marked white spaces.
```python
display(df)
```

## Cleaning and Processing
Optimus was created to make data cleaning a breeze. The API was designed to be super easy to newcomers and very familiar for people that comes from Pandas.
Optimus expands the standard DataFrame functionality adding `.rows` and `.cols` accessors.
For example you can load data from a url, transform and apply some predefined cleaning functions:
```python
new_df = df\
.rows.sort("rank", "desc")\
.cols.lower(["names", "function"])\
.cols.date_format("date arrival", "yyyy/MM/dd", "dd-MM-YYYY")\
.cols.years_between("date arrival", "dd-MM-YYYY", output_cols="from arrival")\
.cols.normalize_chars("names")\
.cols.remove_special_chars("names")\
.rows.drop(df["rank"]>8)\
.cols.rename("*", str.lower)\
.cols.trim("*")\
.cols.unnest("japanese name", output_cols="other names")\
.cols.unnest("last position seen", separator=",", output_cols="pos")\
.cols.drop(["last position seen", "japanese name", "date arrival", "cybertronian", "nulltype"])
```
# Need help? 🛠️
## Feedback
Feedback is what drive Optimus future, so please take a couple of minutes to help shape the Optimus' Roadmap: http://bit.ly/optimus_survey
Also if you want to a suggestion or feature request use https://github.com/hi-primus/optimus/issues
## Troubleshooting
If you have issues, see our [Troubleshooting Guide](https://github.com/hi-primus/optimus/tree/develop-23.5/troubleshooting.md)
# Contributing to Optimus 💡
Contributions go far beyond pull requests and commits. We are very happy to receive any kind of contributions
including:
* [Documentation](https://docs.hi-optimus.com/en/latest/) updates, enhancements, designs, or bugfixes.
* Spelling or grammar fixes.
* README.md corrections or redesigns.
* Adding unit, or functional [tests](https://github.com/hi-primus/optimus/tree/develop-23.5/tests)
* Triaging GitHub issues -- especially determining whether an issue still persists or is reproducible.
* [Blogging, speaking about, or creating tutorials](https://hioptimus.com/category/blog/) about Optimus and its many features.
* Helping others on our official chats
# Backers and Sponsors
Become a [backer](https://opencollective.com/optimus#backer) or a [sponsor](https://opencollective.com/optimus#sponsor) and get your image on our README on Github with a link to your site.
[](#backers) [](#sponsors)
%package help
Summary: Development documents and examples for pyoptimus
Provides: python3-pyoptimus-doc
%description help
# Optimus
[](https://hi-optimus.com)
[](https://github.com/hi-primus/optimus/actions/workflows/main.yml)
[](https://hub.docker.com/r/hiprimus/optimus)
[](https://pypi.org/project/pyoptimus/)
[](https://github.com/hi-primus/optimus/releases)
[](http://calver.org)
[](https://pepy.tech/project/pyoptimus)
[](https://pepy.tech/project/pyoptimus/month)
[](https://pepy.tech/project/pyoptimus/week)
[](https://github.com/bulutyazilim/awesome-datascience)
[](https://communityinviter.com/apps/hi-bumblebee/welcome)
# Overview
Optimus is an opinionated python library to easily load, process, plot and create ML models that run over pandas, Dask, cuDF, dask-cuDF, Vaex or Spark.
Some amazing things Optimus can do for you:
* Process using a simple API, making it easy to use for newcomers.
* More than 100 functions to handle strings, process dates, urls and emails.
* Easily plot data from any size.
* Out of box functions to explore and fix data quality.
* Use the same code to process your data in your laptop or in a remote cluster of GPUs.
[See Documentation](https://docs.hi-optimus.com/en/latest/)
## Try Optimus
To launch a live notebook server to test optimus using binder or Colab, click on one of the following badges:
[](https://mybinder.org/v2/gh/hi-primus/optimus/develop-23.5?filepath=https%3A%2F%2Fraw.githubusercontent.com%2Fhi-primus%2Foptimus%2Fdevelop-23.5%2Fexamples%2F10_min_to_optimus.ipynb)
[](https://colab.research.google.com/github/hi-primus/optimus/blob/master/examples/10_min_to_optimus_colab.ipynb)
## Installation (pip):
In your terminal just type:
```
pip install pyoptimus
```
By default Optimus install Pandas as the default engine, to install other engines you can use the following commands:
| Engine | Command |
|-----------|----------------------------------------|
| Dask | ```pip install pyoptimus[dask]``` |
| cuDF | ```pip install pyoptimus[cudf]``` |
| Dask-cuDF | ```pip install pyoptimus[dask-cudf]``` |
| Vaex | ```pip install pyoptimus[vaex]``` |
| Spark | ```pip install pyoptimus[spark]``` |
To install from the repo:
```
pip install git+https://github.com/hi-primus/optimus.git@develop-23.5
```
To install other engines:
```
pip install git+https://github.com/hi-primus/optimus.git@develop-23.5#egg=pyoptimus[dask]
```
### Requirements
* Python 3.7 or 3.8
## Examples
You can go to [10 minutes to Optimus](https://github.com/hi-primus/optimus/blob/develop-23.5/examples/10_min_to_optimus.ipynb) where you can find the basics to start working in a notebook.
Also you can go to the [Examples](https://github.com/hi-primus/optimus/tree/develop-23.5/examples/examples.md) section and find specific notebooks about data cleaning, data munging, profiling, data enrichment and how to create ML and DL models.
Here's a handy [Cheat Sheet](https://htmlpreview.github.io/?https://github.com/hi-primus/optimus/blob/develop-23.5/docs/cheatsheet/optimus_cheat_sheet.html) with the most common Optimus' operations.
## Start Optimus
Start Optimus using ```"pandas"```, ```"dask"```, ```"cudf"```,```"dask_cudf"```,```"vaex"``` or ```"spark"```.
```python
from optimus import Optimus
op = Optimus("pandas")
```
## Loading data
Now Optimus can load data in csv, json, parquet, avro and excel formats from a local file or from a URL.
```python
#csv
df = op.load.csv("../examples/data/foo.csv")
#json
df = op.load.json("../examples/data/foo.json")
# using a url
df = op.load.json("https://raw.githubusercontent.com/hi-primus/optimus/develop-23.5/examples/data/foo.json")
# parquet
df = op.load.parquet("../examples/data/foo.parquet")
# ...or anything else
df = op.load.file("../examples/data/titanic3.xls")
```
Also, you can load data from Oracle, Redshift, MySQL and Postgres databases.
## Saving Data
```python
#csv
df.save.csv("data/foo.csv")
# json
df.save.json("data/foo.json")
# parquet
df.save.parquet("data/foo.parquet")
```
You can also save data to oracle, redshift, mysql and postgres.
## Create dataframes
Also, you can create a dataframe from scratch
```python
df = op.create.dataframe({
'A': ['a', 'b', 'c', 'd'],
'B': [1, 3, 5, 7],
'C': [2, 4, 6, None],
'D': ['1980/04/10', '1980/04/10', '1980/04/10', '1980/04/10']
})
```
Using `display` you have a beautiful way to show your data with extra information like column number, column data type and marked white spaces.
```python
display(df)
```

## Cleaning and Processing
Optimus was created to make data cleaning a breeze. The API was designed to be super easy to newcomers and very familiar for people that comes from Pandas.
Optimus expands the standard DataFrame functionality adding `.rows` and `.cols` accessors.
For example you can load data from a url, transform and apply some predefined cleaning functions:
```python
new_df = df\
.rows.sort("rank", "desc")\
.cols.lower(["names", "function"])\
.cols.date_format("date arrival", "yyyy/MM/dd", "dd-MM-YYYY")\
.cols.years_between("date arrival", "dd-MM-YYYY", output_cols="from arrival")\
.cols.normalize_chars("names")\
.cols.remove_special_chars("names")\
.rows.drop(df["rank"]>8)\
.cols.rename("*", str.lower)\
.cols.trim("*")\
.cols.unnest("japanese name", output_cols="other names")\
.cols.unnest("last position seen", separator=",", output_cols="pos")\
.cols.drop(["last position seen", "japanese name", "date arrival", "cybertronian", "nulltype"])
```
# Need help? 🛠️
## Feedback
Feedback is what drive Optimus future, so please take a couple of minutes to help shape the Optimus' Roadmap: http://bit.ly/optimus_survey
Also if you want to a suggestion or feature request use https://github.com/hi-primus/optimus/issues
## Troubleshooting
If you have issues, see our [Troubleshooting Guide](https://github.com/hi-primus/optimus/tree/develop-23.5/troubleshooting.md)
# Contributing to Optimus 💡
Contributions go far beyond pull requests and commits. We are very happy to receive any kind of contributions
including:
* [Documentation](https://docs.hi-optimus.com/en/latest/) updates, enhancements, designs, or bugfixes.
* Spelling or grammar fixes.
* README.md corrections or redesigns.
* Adding unit, or functional [tests](https://github.com/hi-primus/optimus/tree/develop-23.5/tests)
* Triaging GitHub issues -- especially determining whether an issue still persists or is reproducible.
* [Blogging, speaking about, or creating tutorials](https://hioptimus.com/category/blog/) about Optimus and its many features.
* Helping others on our official chats
# Backers and Sponsors
Become a [backer](https://opencollective.com/optimus#backer) or a [sponsor](https://opencollective.com/optimus#sponsor) and get your image on our README on Github with a link to your site.
[](#backers) [](#sponsors)
%prep
%autosetup -n pyoptimus-23.5.0b0
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-pyoptimus -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Wed May 31 2023 Python_Bot <Python_Bot@openeuler.org> - 23.5.0b0-1
- Package Spec generated
|