summaryrefslogtreecommitdiff
path: root/python-pyotritonclient.spec
blob: 565af12dad2ac18990d7d1510bb867552c095575 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
%global _empty_manifest_terminate_build 0
Name:		python-pyotritonclient
Version:	0.2.5
Release:	1
Summary:	A lightweight http client library for communicating with Nvidia Triton Inference Server (with Pyodide support in the browser)
License:	BSD
URL:		https://github.com/oeway/pyotritonclient
Source0:	https://mirrors.nju.edu.cn/pypi/web/packages/d7/08/e36fa0510c40f278bb068b3348f4d1ff0b3e0a2eedf081d1f33bd9e05220/pyotritonclient-0.2.5.tar.gz
BuildArch:	noarch

Requires:	python3-six
Requires:	python3-numpy
Requires:	python3-imjoy-rpc
Requires:	python3-msgpack
Requires:	python3-requests
Requires:	python3-rapidjson
Requires:	python3-imjoy-rpc

%description
# Triton HTTP Client for Pyodide

A Pyodide python http client library and utilities for communicating with Triton Inference Server (based on tritonclient from NVIDIA).


This is a simplified implemetation of the triton client from NVIDIA, it works both in the browser with Pyodide Python or the native Python.
It only implement the http client, and most of the API remains the similar but changed into async and with additional utility functions.

## Installation

To use it in native CPython, you can install the package by running:
```
pip install pyotritonclient
```

For Pyodide-based Python environment, for example: [JupyterLite](https://jupyterlite.readthedocs.io/en/latest/_static/lab/index.html) or [Pyodide console](https://pyodide-cdn2.iodide.io/dev/full/console.html), you can install the client by running the following python code:
```python
import micropip
micropip.install("pyotritonclient")
```
## Usage

### Basic example
To execute the model, we provide utility functions to make it much easier:
```python
import numpy as np
from pyotritonclient import execute

# create fake input tensors
input0 = np.zeros([2, 349, 467], dtype='float32')
# run inference
results = await execute(inputs=[input0, {"diameter": 30}], server_url='https://ai.imjoy.io/triton', model_name='cellpose-python')
```

The above example assumes you are running the code in a jupyter notebook or an environment supports top-level await, if you are trying the example code in a normal python script, please wrap the code into an async function and run with asyncio as follows:
```python
import asyncio
import numpy as np
from pyotritonclient import execute

async def run():
    results = await execute(inputs=[np.zeros([2, 349, 467], dtype='float32'), {"diameter": 30}], server_url='https://ai.imjoy.io/triton', model_name='cellpose-python')
    print(results)

loop = asyncio.get_event_loop()
loop.run_until_complete(run())
```

You can access the lower level api, see the [test example](./tests/test_client.py).

You can also find the official [client examples](https://github.com/triton-inference-server/client/tree/main/src/python/examples) demonstrate how to use the 
package to issue request to [triton inference server](https://github.com/triton-inference-server/server). However, please notice that you will need to
change the http client code into async style. For example, instead of doing `client.infer(...)`, you need to do `await client.infer(...)`.

The http client code is forked from [triton client git repo](https://github.com/triton-inference-server/client) since commit [b3005f9db154247a4c792633e54f25f35ccadff0](https://github.com/triton-inference-server/client/tree/b3005f9db154247a4c792633e54f25f35ccadff0).


### Using the sequence executor with stateful models
To simplify the manipulation on stateful models with sequence, we also provide the `SequenceExecutor` to make it easier to run models in a sequence.
```python
from pyotritonclient import SequenceExcutor


seq = SequenceExcutor(
  server_url='https://ai.imjoy.io/triton',
  model_name='cellpose-train',
  sequence_id=100
)
inputs = [
  image.astype('float32'),
  labels.astype('float32'),
  {"steps": 1, "resume": True}
]
for (image, labels, info) in train_samples:
  result = await seq.step(inputs)

result = await seq.end(inputs)
```

Note that above example called `seq.end()` by sending the last inputs again to end the sequence. If you want to specify the inputs for the execution, you can run `result = await se.end(inputs)`.

For a small batch of data, you can also run it like this:
```python
from pyotritonclient import SequenceExcutor

seq = SequenceExcutor(
  server_url='https://ai.imjoy.io/triton',
  model_name='cellpose-train',
  sequence_id=100
)

# a list of inputs
inputs_batch = [[
  image.astype('float32'),
  labels.astype('float32'),
  {"steps": 1, "resume": True}
] for (image, labels, _) in train_samples]

def on_step(i, result):
  """Function called on every step"""
  print(i)

results = await seq(inputs_batch, on_step=on_step)
```



## Server setup
Since we access the server from the browser environment which typically has more security restrictions, it is important that the server is configured to enable browser access.

Please make sure you configured following aspects:
 * The server must provide HTTPS endpoints instead of HTTP
 * The server should send the following headers:
    - `Access-Control-Allow-Headers: Inference-Header-Content-Length,Accept-Encoding,Content-Encoding,Access-Control-Allow-Headers`
    - `Access-Control-Expose-Headers: Inference-Header-Content-Length,Range,Origin,Content-Type`
    - `Access-Control-Allow-Methods: GET,HEAD,OPTIONS,PUT,POST`
    - `Access-Control-Allow-Origin: *` (This is optional depending on whether you want to support CORS)


%package -n python3-pyotritonclient
Summary:	A lightweight http client library for communicating with Nvidia Triton Inference Server (with Pyodide support in the browser)
Provides:	python-pyotritonclient
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-pyotritonclient
# Triton HTTP Client for Pyodide

A Pyodide python http client library and utilities for communicating with Triton Inference Server (based on tritonclient from NVIDIA).


This is a simplified implemetation of the triton client from NVIDIA, it works both in the browser with Pyodide Python or the native Python.
It only implement the http client, and most of the API remains the similar but changed into async and with additional utility functions.

## Installation

To use it in native CPython, you can install the package by running:
```
pip install pyotritonclient
```

For Pyodide-based Python environment, for example: [JupyterLite](https://jupyterlite.readthedocs.io/en/latest/_static/lab/index.html) or [Pyodide console](https://pyodide-cdn2.iodide.io/dev/full/console.html), you can install the client by running the following python code:
```python
import micropip
micropip.install("pyotritonclient")
```
## Usage

### Basic example
To execute the model, we provide utility functions to make it much easier:
```python
import numpy as np
from pyotritonclient import execute

# create fake input tensors
input0 = np.zeros([2, 349, 467], dtype='float32')
# run inference
results = await execute(inputs=[input0, {"diameter": 30}], server_url='https://ai.imjoy.io/triton', model_name='cellpose-python')
```

The above example assumes you are running the code in a jupyter notebook or an environment supports top-level await, if you are trying the example code in a normal python script, please wrap the code into an async function and run with asyncio as follows:
```python
import asyncio
import numpy as np
from pyotritonclient import execute

async def run():
    results = await execute(inputs=[np.zeros([2, 349, 467], dtype='float32'), {"diameter": 30}], server_url='https://ai.imjoy.io/triton', model_name='cellpose-python')
    print(results)

loop = asyncio.get_event_loop()
loop.run_until_complete(run())
```

You can access the lower level api, see the [test example](./tests/test_client.py).

You can also find the official [client examples](https://github.com/triton-inference-server/client/tree/main/src/python/examples) demonstrate how to use the 
package to issue request to [triton inference server](https://github.com/triton-inference-server/server). However, please notice that you will need to
change the http client code into async style. For example, instead of doing `client.infer(...)`, you need to do `await client.infer(...)`.

The http client code is forked from [triton client git repo](https://github.com/triton-inference-server/client) since commit [b3005f9db154247a4c792633e54f25f35ccadff0](https://github.com/triton-inference-server/client/tree/b3005f9db154247a4c792633e54f25f35ccadff0).


### Using the sequence executor with stateful models
To simplify the manipulation on stateful models with sequence, we also provide the `SequenceExecutor` to make it easier to run models in a sequence.
```python
from pyotritonclient import SequenceExcutor


seq = SequenceExcutor(
  server_url='https://ai.imjoy.io/triton',
  model_name='cellpose-train',
  sequence_id=100
)
inputs = [
  image.astype('float32'),
  labels.astype('float32'),
  {"steps": 1, "resume": True}
]
for (image, labels, info) in train_samples:
  result = await seq.step(inputs)

result = await seq.end(inputs)
```

Note that above example called `seq.end()` by sending the last inputs again to end the sequence. If you want to specify the inputs for the execution, you can run `result = await se.end(inputs)`.

For a small batch of data, you can also run it like this:
```python
from pyotritonclient import SequenceExcutor

seq = SequenceExcutor(
  server_url='https://ai.imjoy.io/triton',
  model_name='cellpose-train',
  sequence_id=100
)

# a list of inputs
inputs_batch = [[
  image.astype('float32'),
  labels.astype('float32'),
  {"steps": 1, "resume": True}
] for (image, labels, _) in train_samples]

def on_step(i, result):
  """Function called on every step"""
  print(i)

results = await seq(inputs_batch, on_step=on_step)
```



## Server setup
Since we access the server from the browser environment which typically has more security restrictions, it is important that the server is configured to enable browser access.

Please make sure you configured following aspects:
 * The server must provide HTTPS endpoints instead of HTTP
 * The server should send the following headers:
    - `Access-Control-Allow-Headers: Inference-Header-Content-Length,Accept-Encoding,Content-Encoding,Access-Control-Allow-Headers`
    - `Access-Control-Expose-Headers: Inference-Header-Content-Length,Range,Origin,Content-Type`
    - `Access-Control-Allow-Methods: GET,HEAD,OPTIONS,PUT,POST`
    - `Access-Control-Allow-Origin: *` (This is optional depending on whether you want to support CORS)


%package help
Summary:	Development documents and examples for pyotritonclient
Provides:	python3-pyotritonclient-doc
%description help
# Triton HTTP Client for Pyodide

A Pyodide python http client library and utilities for communicating with Triton Inference Server (based on tritonclient from NVIDIA).


This is a simplified implemetation of the triton client from NVIDIA, it works both in the browser with Pyodide Python or the native Python.
It only implement the http client, and most of the API remains the similar but changed into async and with additional utility functions.

## Installation

To use it in native CPython, you can install the package by running:
```
pip install pyotritonclient
```

For Pyodide-based Python environment, for example: [JupyterLite](https://jupyterlite.readthedocs.io/en/latest/_static/lab/index.html) or [Pyodide console](https://pyodide-cdn2.iodide.io/dev/full/console.html), you can install the client by running the following python code:
```python
import micropip
micropip.install("pyotritonclient")
```
## Usage

### Basic example
To execute the model, we provide utility functions to make it much easier:
```python
import numpy as np
from pyotritonclient import execute

# create fake input tensors
input0 = np.zeros([2, 349, 467], dtype='float32')
# run inference
results = await execute(inputs=[input0, {"diameter": 30}], server_url='https://ai.imjoy.io/triton', model_name='cellpose-python')
```

The above example assumes you are running the code in a jupyter notebook or an environment supports top-level await, if you are trying the example code in a normal python script, please wrap the code into an async function and run with asyncio as follows:
```python
import asyncio
import numpy as np
from pyotritonclient import execute

async def run():
    results = await execute(inputs=[np.zeros([2, 349, 467], dtype='float32'), {"diameter": 30}], server_url='https://ai.imjoy.io/triton', model_name='cellpose-python')
    print(results)

loop = asyncio.get_event_loop()
loop.run_until_complete(run())
```

You can access the lower level api, see the [test example](./tests/test_client.py).

You can also find the official [client examples](https://github.com/triton-inference-server/client/tree/main/src/python/examples) demonstrate how to use the 
package to issue request to [triton inference server](https://github.com/triton-inference-server/server). However, please notice that you will need to
change the http client code into async style. For example, instead of doing `client.infer(...)`, you need to do `await client.infer(...)`.

The http client code is forked from [triton client git repo](https://github.com/triton-inference-server/client) since commit [b3005f9db154247a4c792633e54f25f35ccadff0](https://github.com/triton-inference-server/client/tree/b3005f9db154247a4c792633e54f25f35ccadff0).


### Using the sequence executor with stateful models
To simplify the manipulation on stateful models with sequence, we also provide the `SequenceExecutor` to make it easier to run models in a sequence.
```python
from pyotritonclient import SequenceExcutor


seq = SequenceExcutor(
  server_url='https://ai.imjoy.io/triton',
  model_name='cellpose-train',
  sequence_id=100
)
inputs = [
  image.astype('float32'),
  labels.astype('float32'),
  {"steps": 1, "resume": True}
]
for (image, labels, info) in train_samples:
  result = await seq.step(inputs)

result = await seq.end(inputs)
```

Note that above example called `seq.end()` by sending the last inputs again to end the sequence. If you want to specify the inputs for the execution, you can run `result = await se.end(inputs)`.

For a small batch of data, you can also run it like this:
```python
from pyotritonclient import SequenceExcutor

seq = SequenceExcutor(
  server_url='https://ai.imjoy.io/triton',
  model_name='cellpose-train',
  sequence_id=100
)

# a list of inputs
inputs_batch = [[
  image.astype('float32'),
  labels.astype('float32'),
  {"steps": 1, "resume": True}
] for (image, labels, _) in train_samples]

def on_step(i, result):
  """Function called on every step"""
  print(i)

results = await seq(inputs_batch, on_step=on_step)
```



## Server setup
Since we access the server from the browser environment which typically has more security restrictions, it is important that the server is configured to enable browser access.

Please make sure you configured following aspects:
 * The server must provide HTTPS endpoints instead of HTTP
 * The server should send the following headers:
    - `Access-Control-Allow-Headers: Inference-Header-Content-Length,Accept-Encoding,Content-Encoding,Access-Control-Allow-Headers`
    - `Access-Control-Expose-Headers: Inference-Header-Content-Length,Range,Origin,Content-Type`
    - `Access-Control-Allow-Methods: GET,HEAD,OPTIONS,PUT,POST`
    - `Access-Control-Allow-Origin: *` (This is optional depending on whether you want to support CORS)


%prep
%autosetup -n pyotritonclient-0.2.5

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-pyotritonclient -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Fri May 05 2023 Python_Bot <Python_Bot@openeuler.org> - 0.2.5-1
- Package Spec generated