1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
|
%global _empty_manifest_terminate_build 0
Name: python-pypeln
Version: 0.4.9
Release: 1
Summary: please add a summary manually as the author left a blank one
License: MIT
URL: https://cgarciae.github.io/pypeln
Source0: https://mirrors.nju.edu.cn/pypi/web/packages/da/87/7e4929696a4cf29fede0756d38c5cc08395d91bd7feac8d6072edf0a1ecf/pypeln-0.4.9.tar.gz
BuildArch: noarch
Requires: python3-stopit
Requires: python3-typing_extensions
Requires: python3-dataclasses
%description
_Pypeln (pronounced as "pypeline") is a simple yet powerful Python library for creating concurrent data pipelines._
#### Main Features
* **Simple**: Pypeln was designed to solve _medium_ data tasks that require parallelism and concurrency where using frameworks like Spark or Dask feels exaggerated or unnatural.
* **Easy-to-use**: Pypeln exposes a familiar functional API compatible with regular Python code.
* **Flexible**: Pypeln enables you to build pipelines using Processes, Threads and asyncio.Tasks via the exact same API.
* **Fine-grained Control**: Pypeln allows you to have control over the memory and cpu resources used at each stage of your pipelines.
For more information take a look at the [Documentation](https://cgarciae.github.io/pypeln).

## Installation
Install Pypeln using pip:
```bash
pip install pypeln
```
## Basic Usage
With Pypeln you can easily create multi-stage data pipelines using 3 type of workers:
### Processes
You can create a pipeline based on [multiprocessing.Process](https://docs.python.org/3.4/library/multiprocessing.html#multiprocessing.Process) workers by using the `process` module:
```python
import pypeln as pl
import time
from random import random
def slow_add1(x):
time.sleep(random()) # <= some slow computation
return x + 1
def slow_gt3(x):
time.sleep(random()) # <= some slow computation
return x > 3
data = range(10) # [0, 1, 2, ..., 9]
stage = pl.process.map(slow_add1, data, workers=3, maxsize=4)
stage = pl.process.filter(slow_gt3, stage, workers=2)
data = list(stage) # e.g. [5, 6, 9, 4, 8, 10, 7]
```
At each stage the you can specify the numbers of `workers`. The `maxsize` parameter limits the maximum amount of elements that the stage can hold simultaneously.
### Threads
You can create a pipeline based on [threading.Thread](https://docs.python.org/3/library/threading.html#threading.Thread) workers by using the `thread` module:
```python
import pypeln as pl
import time
from random import random
def slow_add1(x):
time.sleep(random()) # <= some slow computation
return x + 1
def slow_gt3(x):
time.sleep(random()) # <= some slow computation
return x > 3
data = range(10) # [0, 1, 2, ..., 9]
stage = pl.thread.map(slow_add1, data, workers=3, maxsize=4)
stage = pl.thread.filter(slow_gt3, stage, workers=2)
data = list(stage) # e.g. [5, 6, 9, 4, 8, 10, 7]
```
Here we have the exact same situation as in the previous case except that the worker are Threads.
### Tasks
You can create a pipeline based on [asyncio.Task](https://docs.python.org/3.4/library/asyncio-task.html#asyncio.Task) workers by using the `task` module:
```python
import pypeln as pl
import asyncio
from random import random
async def slow_add1(x):
await asyncio.sleep(random()) # <= some slow computation
return x + 1
async def slow_gt3(x):
await asyncio.sleep(random()) # <= some slow computation
return x > 3
data = range(10) # [0, 1, 2, ..., 9]
stage = pl.task.map(slow_add1, data, workers=3, maxsize=4)
stage = pl.task.filter(slow_gt3, stage, workers=2)
data = list(stage) # e.g. [5, 6, 9, 4, 8, 10, 7]
```
Conceptually similar but everything is running in a single thread and Task workers are created dynamically. If the code is running inside an async task can use `await` on the stage instead to avoid blocking:
```python
import pypeln as pl
import asyncio
from random import random
async def slow_add1(x):
await asyncio.sleep(random()) # <= some slow computation
return x + 1
async def slow_gt3(x):
await asyncio.sleep(random()) # <= some slow computation
return x > 3
def main():
data = range(10) # [0, 1, 2, ..., 9]
stage = pl.task.map(slow_add1, data, workers=3, maxsize=4)
stage = pl.task.filter(slow_gt3, stage, workers=2)
data = await stage # e.g. [5, 6, 9, 4, 8, 10, 7]
asyncio.run(main())
```
### Sync
The `sync` module implements all operations using synchronous generators. This module is useful for debugging or when you don't need to perform heavy CPU or IO tasks but still want to retain element order information that certain functions like `pl.*.ordered` rely on.
```python
import pypeln as pl
import time
from random import random
def slow_add1(x):
return x + 1
def slow_gt3(x):
return x > 3
data = range(10) # [0, 1, 2, ..., 9]
stage = pl.sync.map(slow_add1, data, workers=3, maxsize=4)
stage = pl.sync.filter(slow_gt3, stage, workers=2)
data = list(stage) # [4, 5, 6, 7, 8, 9, 10]
```
Common arguments such as `workers` and `maxsize` are accepted by this module's functions for API compatibility purposes but are ignored.
## Mixed Pipelines
You can create pipelines using different worker types such that each type is the best for its given task so you can get the maximum performance out of your code:
```python
data = get_iterable()
data = pl.task.map(f1, data, workers=100)
data = pl.thread.flat_map(f2, data, workers=10)
data = filter(f3, data)
data = pl.process.map(f4, data, workers=5, maxsize=200)
```
Notice that here we even used a regular python `filter`, since stages are iterables Pypeln integrates smoothly with any python code, just be aware of how each stage behaves.
## Pipe Operator
In the spirit of being a true pipeline library, Pypeln also lets you create your pipelines using the pipe `|` operator:
```python
data = (
range(10)
| pl.process.map(slow_add1, workers=3, maxsize=4)
| pl.process.filter(slow_gt3, workers=2)
| list
)
```
## Run Tests
A sample script is provided to run the tests in a container (either Docker or Podman is supported), to run tests:
```bash
$ bash scripts/run-tests.sh
```
This script can also receive a python version to check test against, i.e
```bash
$ bash scripts/run-tests.sh 3.7
```
## Related Stuff
* [Making an Unlimited Number of Requests with Python aiohttp + pypeln](https://medium.com/@cgarciae/making-an-infinite-number-of-requests-with-python-aiohttp-pypeln-3a552b97dc95)
* [Process Pools](https://docs.python.org/3.4/library/multiprocessing.html?highlight=process#module-multiprocessing.pool)
* [Making 100 million requests with Python aiohttp](https://www.artificialworlds.net/blog/2017/06/12/making-100-million-requests-with-python-aiohttp/)
* [Python multiprocessing Queue memory management](https://stackoverflow.com/questions/52286527/python-multiprocessing-queue-memory-management/52286686#52286686)
* [joblib](https://joblib.readthedocs.io/en/latest/)
* [mpipe](https://vmlaker.github.io/mpipe/)
## Contributors
* [cgarciae](https://github.com/cgarciae)
* [Davidnet](https://github.com/Davidnet)
## License
MIT
%package -n python3-pypeln
Summary: please add a summary manually as the author left a blank one
Provides: python-pypeln
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-pypeln
_Pypeln (pronounced as "pypeline") is a simple yet powerful Python library for creating concurrent data pipelines._
#### Main Features
* **Simple**: Pypeln was designed to solve _medium_ data tasks that require parallelism and concurrency where using frameworks like Spark or Dask feels exaggerated or unnatural.
* **Easy-to-use**: Pypeln exposes a familiar functional API compatible with regular Python code.
* **Flexible**: Pypeln enables you to build pipelines using Processes, Threads and asyncio.Tasks via the exact same API.
* **Fine-grained Control**: Pypeln allows you to have control over the memory and cpu resources used at each stage of your pipelines.
For more information take a look at the [Documentation](https://cgarciae.github.io/pypeln).

## Installation
Install Pypeln using pip:
```bash
pip install pypeln
```
## Basic Usage
With Pypeln you can easily create multi-stage data pipelines using 3 type of workers:
### Processes
You can create a pipeline based on [multiprocessing.Process](https://docs.python.org/3.4/library/multiprocessing.html#multiprocessing.Process) workers by using the `process` module:
```python
import pypeln as pl
import time
from random import random
def slow_add1(x):
time.sleep(random()) # <= some slow computation
return x + 1
def slow_gt3(x):
time.sleep(random()) # <= some slow computation
return x > 3
data = range(10) # [0, 1, 2, ..., 9]
stage = pl.process.map(slow_add1, data, workers=3, maxsize=4)
stage = pl.process.filter(slow_gt3, stage, workers=2)
data = list(stage) # e.g. [5, 6, 9, 4, 8, 10, 7]
```
At each stage the you can specify the numbers of `workers`. The `maxsize` parameter limits the maximum amount of elements that the stage can hold simultaneously.
### Threads
You can create a pipeline based on [threading.Thread](https://docs.python.org/3/library/threading.html#threading.Thread) workers by using the `thread` module:
```python
import pypeln as pl
import time
from random import random
def slow_add1(x):
time.sleep(random()) # <= some slow computation
return x + 1
def slow_gt3(x):
time.sleep(random()) # <= some slow computation
return x > 3
data = range(10) # [0, 1, 2, ..., 9]
stage = pl.thread.map(slow_add1, data, workers=3, maxsize=4)
stage = pl.thread.filter(slow_gt3, stage, workers=2)
data = list(stage) # e.g. [5, 6, 9, 4, 8, 10, 7]
```
Here we have the exact same situation as in the previous case except that the worker are Threads.
### Tasks
You can create a pipeline based on [asyncio.Task](https://docs.python.org/3.4/library/asyncio-task.html#asyncio.Task) workers by using the `task` module:
```python
import pypeln as pl
import asyncio
from random import random
async def slow_add1(x):
await asyncio.sleep(random()) # <= some slow computation
return x + 1
async def slow_gt3(x):
await asyncio.sleep(random()) # <= some slow computation
return x > 3
data = range(10) # [0, 1, 2, ..., 9]
stage = pl.task.map(slow_add1, data, workers=3, maxsize=4)
stage = pl.task.filter(slow_gt3, stage, workers=2)
data = list(stage) # e.g. [5, 6, 9, 4, 8, 10, 7]
```
Conceptually similar but everything is running in a single thread and Task workers are created dynamically. If the code is running inside an async task can use `await` on the stage instead to avoid blocking:
```python
import pypeln as pl
import asyncio
from random import random
async def slow_add1(x):
await asyncio.sleep(random()) # <= some slow computation
return x + 1
async def slow_gt3(x):
await asyncio.sleep(random()) # <= some slow computation
return x > 3
def main():
data = range(10) # [0, 1, 2, ..., 9]
stage = pl.task.map(slow_add1, data, workers=3, maxsize=4)
stage = pl.task.filter(slow_gt3, stage, workers=2)
data = await stage # e.g. [5, 6, 9, 4, 8, 10, 7]
asyncio.run(main())
```
### Sync
The `sync` module implements all operations using synchronous generators. This module is useful for debugging or when you don't need to perform heavy CPU or IO tasks but still want to retain element order information that certain functions like `pl.*.ordered` rely on.
```python
import pypeln as pl
import time
from random import random
def slow_add1(x):
return x + 1
def slow_gt3(x):
return x > 3
data = range(10) # [0, 1, 2, ..., 9]
stage = pl.sync.map(slow_add1, data, workers=3, maxsize=4)
stage = pl.sync.filter(slow_gt3, stage, workers=2)
data = list(stage) # [4, 5, 6, 7, 8, 9, 10]
```
Common arguments such as `workers` and `maxsize` are accepted by this module's functions for API compatibility purposes but are ignored.
## Mixed Pipelines
You can create pipelines using different worker types such that each type is the best for its given task so you can get the maximum performance out of your code:
```python
data = get_iterable()
data = pl.task.map(f1, data, workers=100)
data = pl.thread.flat_map(f2, data, workers=10)
data = filter(f3, data)
data = pl.process.map(f4, data, workers=5, maxsize=200)
```
Notice that here we even used a regular python `filter`, since stages are iterables Pypeln integrates smoothly with any python code, just be aware of how each stage behaves.
## Pipe Operator
In the spirit of being a true pipeline library, Pypeln also lets you create your pipelines using the pipe `|` operator:
```python
data = (
range(10)
| pl.process.map(slow_add1, workers=3, maxsize=4)
| pl.process.filter(slow_gt3, workers=2)
| list
)
```
## Run Tests
A sample script is provided to run the tests in a container (either Docker or Podman is supported), to run tests:
```bash
$ bash scripts/run-tests.sh
```
This script can also receive a python version to check test against, i.e
```bash
$ bash scripts/run-tests.sh 3.7
```
## Related Stuff
* [Making an Unlimited Number of Requests with Python aiohttp + pypeln](https://medium.com/@cgarciae/making-an-infinite-number-of-requests-with-python-aiohttp-pypeln-3a552b97dc95)
* [Process Pools](https://docs.python.org/3.4/library/multiprocessing.html?highlight=process#module-multiprocessing.pool)
* [Making 100 million requests with Python aiohttp](https://www.artificialworlds.net/blog/2017/06/12/making-100-million-requests-with-python-aiohttp/)
* [Python multiprocessing Queue memory management](https://stackoverflow.com/questions/52286527/python-multiprocessing-queue-memory-management/52286686#52286686)
* [joblib](https://joblib.readthedocs.io/en/latest/)
* [mpipe](https://vmlaker.github.io/mpipe/)
## Contributors
* [cgarciae](https://github.com/cgarciae)
* [Davidnet](https://github.com/Davidnet)
## License
MIT
%package help
Summary: Development documents and examples for pypeln
Provides: python3-pypeln-doc
%description help
_Pypeln (pronounced as "pypeline") is a simple yet powerful Python library for creating concurrent data pipelines._
#### Main Features
* **Simple**: Pypeln was designed to solve _medium_ data tasks that require parallelism and concurrency where using frameworks like Spark or Dask feels exaggerated or unnatural.
* **Easy-to-use**: Pypeln exposes a familiar functional API compatible with regular Python code.
* **Flexible**: Pypeln enables you to build pipelines using Processes, Threads and asyncio.Tasks via the exact same API.
* **Fine-grained Control**: Pypeln allows you to have control over the memory and cpu resources used at each stage of your pipelines.
For more information take a look at the [Documentation](https://cgarciae.github.io/pypeln).

## Installation
Install Pypeln using pip:
```bash
pip install pypeln
```
## Basic Usage
With Pypeln you can easily create multi-stage data pipelines using 3 type of workers:
### Processes
You can create a pipeline based on [multiprocessing.Process](https://docs.python.org/3.4/library/multiprocessing.html#multiprocessing.Process) workers by using the `process` module:
```python
import pypeln as pl
import time
from random import random
def slow_add1(x):
time.sleep(random()) # <= some slow computation
return x + 1
def slow_gt3(x):
time.sleep(random()) # <= some slow computation
return x > 3
data = range(10) # [0, 1, 2, ..., 9]
stage = pl.process.map(slow_add1, data, workers=3, maxsize=4)
stage = pl.process.filter(slow_gt3, stage, workers=2)
data = list(stage) # e.g. [5, 6, 9, 4, 8, 10, 7]
```
At each stage the you can specify the numbers of `workers`. The `maxsize` parameter limits the maximum amount of elements that the stage can hold simultaneously.
### Threads
You can create a pipeline based on [threading.Thread](https://docs.python.org/3/library/threading.html#threading.Thread) workers by using the `thread` module:
```python
import pypeln as pl
import time
from random import random
def slow_add1(x):
time.sleep(random()) # <= some slow computation
return x + 1
def slow_gt3(x):
time.sleep(random()) # <= some slow computation
return x > 3
data = range(10) # [0, 1, 2, ..., 9]
stage = pl.thread.map(slow_add1, data, workers=3, maxsize=4)
stage = pl.thread.filter(slow_gt3, stage, workers=2)
data = list(stage) # e.g. [5, 6, 9, 4, 8, 10, 7]
```
Here we have the exact same situation as in the previous case except that the worker are Threads.
### Tasks
You can create a pipeline based on [asyncio.Task](https://docs.python.org/3.4/library/asyncio-task.html#asyncio.Task) workers by using the `task` module:
```python
import pypeln as pl
import asyncio
from random import random
async def slow_add1(x):
await asyncio.sleep(random()) # <= some slow computation
return x + 1
async def slow_gt3(x):
await asyncio.sleep(random()) # <= some slow computation
return x > 3
data = range(10) # [0, 1, 2, ..., 9]
stage = pl.task.map(slow_add1, data, workers=3, maxsize=4)
stage = pl.task.filter(slow_gt3, stage, workers=2)
data = list(stage) # e.g. [5, 6, 9, 4, 8, 10, 7]
```
Conceptually similar but everything is running in a single thread and Task workers are created dynamically. If the code is running inside an async task can use `await` on the stage instead to avoid blocking:
```python
import pypeln as pl
import asyncio
from random import random
async def slow_add1(x):
await asyncio.sleep(random()) # <= some slow computation
return x + 1
async def slow_gt3(x):
await asyncio.sleep(random()) # <= some slow computation
return x > 3
def main():
data = range(10) # [0, 1, 2, ..., 9]
stage = pl.task.map(slow_add1, data, workers=3, maxsize=4)
stage = pl.task.filter(slow_gt3, stage, workers=2)
data = await stage # e.g. [5, 6, 9, 4, 8, 10, 7]
asyncio.run(main())
```
### Sync
The `sync` module implements all operations using synchronous generators. This module is useful for debugging or when you don't need to perform heavy CPU or IO tasks but still want to retain element order information that certain functions like `pl.*.ordered` rely on.
```python
import pypeln as pl
import time
from random import random
def slow_add1(x):
return x + 1
def slow_gt3(x):
return x > 3
data = range(10) # [0, 1, 2, ..., 9]
stage = pl.sync.map(slow_add1, data, workers=3, maxsize=4)
stage = pl.sync.filter(slow_gt3, stage, workers=2)
data = list(stage) # [4, 5, 6, 7, 8, 9, 10]
```
Common arguments such as `workers` and `maxsize` are accepted by this module's functions for API compatibility purposes but are ignored.
## Mixed Pipelines
You can create pipelines using different worker types such that each type is the best for its given task so you can get the maximum performance out of your code:
```python
data = get_iterable()
data = pl.task.map(f1, data, workers=100)
data = pl.thread.flat_map(f2, data, workers=10)
data = filter(f3, data)
data = pl.process.map(f4, data, workers=5, maxsize=200)
```
Notice that here we even used a regular python `filter`, since stages are iterables Pypeln integrates smoothly with any python code, just be aware of how each stage behaves.
## Pipe Operator
In the spirit of being a true pipeline library, Pypeln also lets you create your pipelines using the pipe `|` operator:
```python
data = (
range(10)
| pl.process.map(slow_add1, workers=3, maxsize=4)
| pl.process.filter(slow_gt3, workers=2)
| list
)
```
## Run Tests
A sample script is provided to run the tests in a container (either Docker or Podman is supported), to run tests:
```bash
$ bash scripts/run-tests.sh
```
This script can also receive a python version to check test against, i.e
```bash
$ bash scripts/run-tests.sh 3.7
```
## Related Stuff
* [Making an Unlimited Number of Requests with Python aiohttp + pypeln](https://medium.com/@cgarciae/making-an-infinite-number-of-requests-with-python-aiohttp-pypeln-3a552b97dc95)
* [Process Pools](https://docs.python.org/3.4/library/multiprocessing.html?highlight=process#module-multiprocessing.pool)
* [Making 100 million requests with Python aiohttp](https://www.artificialworlds.net/blog/2017/06/12/making-100-million-requests-with-python-aiohttp/)
* [Python multiprocessing Queue memory management](https://stackoverflow.com/questions/52286527/python-multiprocessing-queue-memory-management/52286686#52286686)
* [joblib](https://joblib.readthedocs.io/en/latest/)
* [mpipe](https://vmlaker.github.io/mpipe/)
## Contributors
* [cgarciae](https://github.com/cgarciae)
* [Davidnet](https://github.com/Davidnet)
## License
MIT
%prep
%autosetup -n pypeln-0.4.9
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-pypeln -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Tue Apr 25 2023 Python_Bot <Python_Bot@openeuler.org> - 0.4.9-1
- Package Spec generated
|