diff options
| author | CoprDistGit <infra@openeuler.org> | 2023-05-05 13:05:11 +0000 |
|---|---|---|
| committer | CoprDistGit <infra@openeuler.org> | 2023-05-05 13:05:11 +0000 |
| commit | 0b4a618319dcc2c1ae5ebc8cb8a426cca73092e3 (patch) | |
| tree | c4871530291e5f0f3ea4fe04319a4dd0c8286a86 | |
| parent | 7e4c6d1472df3113855e6de30e483a9ad4a6abf0 (diff) | |
automatic import of python-pypmml-sparkopeneuler20.03
| -rw-r--r-- | .gitignore | 1 | ||||
| -rw-r--r-- | python-pypmml-spark.spec | 201 | ||||
| -rw-r--r-- | sources | 1 |
3 files changed, 203 insertions, 0 deletions
@@ -0,0 +1 @@ +/pypmml-spark-0.9.16.tar.gz diff --git a/python-pypmml-spark.spec b/python-pypmml-spark.spec new file mode 100644 index 0000000..4621a4b --- /dev/null +++ b/python-pypmml-spark.spec @@ -0,0 +1,201 @@ +%global _empty_manifest_terminate_build 0 +Name: python-pypmml-spark +Version: 0.9.16 +Release: 1 +Summary: Python PMML scoring library for PySpark as SparkML Transformer +License: Apache License 2.0 +URL: https://github.com/autodeployai/pypmml-spark +Source0: https://mirrors.nju.edu.cn/pypi/web/packages/93/18/a32277826a25ed1f8acc429d80e034d00c763066919118179433c738ea68/pypmml-spark-0.9.16.tar.gz +BuildArch: noarch + + +%description +[pypmml-spark](https://github.com/autodeployai/pypmml-spark/tree/master) | PySpark >= 3.0.0 +[pypmml-spark2](https://github.com/autodeployai/pypmml-spark/tree/spark-2.x) | PySpark >= 2.4.0, < 3.0.0 +## Installation +```bash +pip install pypmml-spark +``` +Or install the latest version from github: +```bash +pip install --upgrade git+https://github.com/autodeployai/pypmml-spark.git +``` +After that, you need to do more to use it in Spark that must know those jars in the package `pypmml_spark.jars`. There are several ways to do that: +1. The easiest way is to run the script `link_pmml4s_jars_into_spark.py` that is delivered with `pypmml-spark`: + ```bash + link_pmml4s_jars_into_spark.py + ``` +2. Use those config options to specify dependent jars properly. e.g. `--jars`, or `spark.executor.extraClassPath` and `spark.executor.extraClassPath`. See [Spark](http://spark.apache.org/docs/latest/configuration.html) for details about those parameters. +## Usage +1. Load model from various sources, e.g. filename, string, or array of bytes. + ```python + from pypmml_spark import ScoreModel + # The model is from http://dmg.org/pmml/pmml_examples/KNIME_PMML_4.1_Examples/single_iris_dectree.xml + model = ScoreModel.fromFile('single_iris_dectree.xml') + ``` +2. Call `transform(dataset)` to run a batch score against an input dataset. + ```python + # The data is from http://dmg.org/pmml/pmml_examples/Iris.csv + df = spark.read.csv('Iris.csv', header='true') + score_df = model.transform(df) + ``` +## Use PMML in Scala or Java +See the [PMML4S](https://github.com/autodeployai/pmml4s) project. _PMML4S_ is a PMML scoring library for Scala. It provides both Scala and Java Evaluator API for PMML. +## Use PMML in Python +See the [PyPMML](https://github.com/autodeployai/pypmml) project. _PyPMML_ is a Python PMML scoring library, it really is the Python API for PMML4S. +## Use PMML in Spark +See the [PMML4S-Spark](https://github.com/autodeployai/pmml4s-spark) project. _PMML4S-Spark_ is a PMML scoring library for Spark as SparkML Transformer. +## Deploy PMML as REST API +See the [AI-Serving](https://github.com/autodeployai/ai-serving) project. _AI-Serving_ is serving AI/ML models in the open standard formats PMML and ONNX with both HTTP (REST API) and gRPC endpoints. +## Deploy and Manage AI/ML models at scale +See the [DaaS](https://www.autodeploy.ai/) system that deploys AI/ML models in production at scale on Kubernetes. +## Support +If you have any questions about the _PyPMML-Spark_ library, please open issues on this repository. +Feedback and contributions to the project, no matter what kind, are always very welcome. +## License +_PyPMML-Spark_ is licensed under [APL 2.0](http://www.apache.org/licenses/LICENSE-2.0). + +%package -n python3-pypmml-spark +Summary: Python PMML scoring library for PySpark as SparkML Transformer +Provides: python-pypmml-spark +BuildRequires: python3-devel +BuildRequires: python3-setuptools +BuildRequires: python3-pip +%description -n python3-pypmml-spark +[pypmml-spark](https://github.com/autodeployai/pypmml-spark/tree/master) | PySpark >= 3.0.0 +[pypmml-spark2](https://github.com/autodeployai/pypmml-spark/tree/spark-2.x) | PySpark >= 2.4.0, < 3.0.0 +## Installation +```bash +pip install pypmml-spark +``` +Or install the latest version from github: +```bash +pip install --upgrade git+https://github.com/autodeployai/pypmml-spark.git +``` +After that, you need to do more to use it in Spark that must know those jars in the package `pypmml_spark.jars`. There are several ways to do that: +1. The easiest way is to run the script `link_pmml4s_jars_into_spark.py` that is delivered with `pypmml-spark`: + ```bash + link_pmml4s_jars_into_spark.py + ``` +2. Use those config options to specify dependent jars properly. e.g. `--jars`, or `spark.executor.extraClassPath` and `spark.executor.extraClassPath`. See [Spark](http://spark.apache.org/docs/latest/configuration.html) for details about those parameters. +## Usage +1. Load model from various sources, e.g. filename, string, or array of bytes. + ```python + from pypmml_spark import ScoreModel + # The model is from http://dmg.org/pmml/pmml_examples/KNIME_PMML_4.1_Examples/single_iris_dectree.xml + model = ScoreModel.fromFile('single_iris_dectree.xml') + ``` +2. Call `transform(dataset)` to run a batch score against an input dataset. + ```python + # The data is from http://dmg.org/pmml/pmml_examples/Iris.csv + df = spark.read.csv('Iris.csv', header='true') + score_df = model.transform(df) + ``` +## Use PMML in Scala or Java +See the [PMML4S](https://github.com/autodeployai/pmml4s) project. _PMML4S_ is a PMML scoring library for Scala. It provides both Scala and Java Evaluator API for PMML. +## Use PMML in Python +See the [PyPMML](https://github.com/autodeployai/pypmml) project. _PyPMML_ is a Python PMML scoring library, it really is the Python API for PMML4S. +## Use PMML in Spark +See the [PMML4S-Spark](https://github.com/autodeployai/pmml4s-spark) project. _PMML4S-Spark_ is a PMML scoring library for Spark as SparkML Transformer. +## Deploy PMML as REST API +See the [AI-Serving](https://github.com/autodeployai/ai-serving) project. _AI-Serving_ is serving AI/ML models in the open standard formats PMML and ONNX with both HTTP (REST API) and gRPC endpoints. +## Deploy and Manage AI/ML models at scale +See the [DaaS](https://www.autodeploy.ai/) system that deploys AI/ML models in production at scale on Kubernetes. +## Support +If you have any questions about the _PyPMML-Spark_ library, please open issues on this repository. +Feedback and contributions to the project, no matter what kind, are always very welcome. +## License +_PyPMML-Spark_ is licensed under [APL 2.0](http://www.apache.org/licenses/LICENSE-2.0). + +%package help +Summary: Development documents and examples for pypmml-spark +Provides: python3-pypmml-spark-doc +%description help +[pypmml-spark](https://github.com/autodeployai/pypmml-spark/tree/master) | PySpark >= 3.0.0 +[pypmml-spark2](https://github.com/autodeployai/pypmml-spark/tree/spark-2.x) | PySpark >= 2.4.0, < 3.0.0 +## Installation +```bash +pip install pypmml-spark +``` +Or install the latest version from github: +```bash +pip install --upgrade git+https://github.com/autodeployai/pypmml-spark.git +``` +After that, you need to do more to use it in Spark that must know those jars in the package `pypmml_spark.jars`. There are several ways to do that: +1. The easiest way is to run the script `link_pmml4s_jars_into_spark.py` that is delivered with `pypmml-spark`: + ```bash + link_pmml4s_jars_into_spark.py + ``` +2. Use those config options to specify dependent jars properly. e.g. `--jars`, or `spark.executor.extraClassPath` and `spark.executor.extraClassPath`. See [Spark](http://spark.apache.org/docs/latest/configuration.html) for details about those parameters. +## Usage +1. Load model from various sources, e.g. filename, string, or array of bytes. + ```python + from pypmml_spark import ScoreModel + # The model is from http://dmg.org/pmml/pmml_examples/KNIME_PMML_4.1_Examples/single_iris_dectree.xml + model = ScoreModel.fromFile('single_iris_dectree.xml') + ``` +2. Call `transform(dataset)` to run a batch score against an input dataset. + ```python + # The data is from http://dmg.org/pmml/pmml_examples/Iris.csv + df = spark.read.csv('Iris.csv', header='true') + score_df = model.transform(df) + ``` +## Use PMML in Scala or Java +See the [PMML4S](https://github.com/autodeployai/pmml4s) project. _PMML4S_ is a PMML scoring library for Scala. It provides both Scala and Java Evaluator API for PMML. +## Use PMML in Python +See the [PyPMML](https://github.com/autodeployai/pypmml) project. _PyPMML_ is a Python PMML scoring library, it really is the Python API for PMML4S. +## Use PMML in Spark +See the [PMML4S-Spark](https://github.com/autodeployai/pmml4s-spark) project. _PMML4S-Spark_ is a PMML scoring library for Spark as SparkML Transformer. +## Deploy PMML as REST API +See the [AI-Serving](https://github.com/autodeployai/ai-serving) project. _AI-Serving_ is serving AI/ML models in the open standard formats PMML and ONNX with both HTTP (REST API) and gRPC endpoints. +## Deploy and Manage AI/ML models at scale +See the [DaaS](https://www.autodeploy.ai/) system that deploys AI/ML models in production at scale on Kubernetes. +## Support +If you have any questions about the _PyPMML-Spark_ library, please open issues on this repository. +Feedback and contributions to the project, no matter what kind, are always very welcome. +## License +_PyPMML-Spark_ is licensed under [APL 2.0](http://www.apache.org/licenses/LICENSE-2.0). + +%prep +%autosetup -n pypmml-spark-0.9.16 + +%build +%py3_build + +%install +%py3_install +install -d -m755 %{buildroot}/%{_pkgdocdir} +if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi +if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi +if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi +if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi +pushd %{buildroot} +if [ -d usr/lib ]; then + find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/lib64 ]; then + find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/bin ]; then + find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/sbin ]; then + find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst +fi +touch doclist.lst +if [ -d usr/share/man ]; then + find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst +fi +popd +mv %{buildroot}/filelist.lst . +mv %{buildroot}/doclist.lst . + +%files -n python3-pypmml-spark -f filelist.lst +%dir %{python3_sitelib}/* + +%files help -f doclist.lst +%{_docdir}/* + +%changelog +* Fri May 05 2023 Python_Bot <Python_Bot@openeuler.org> - 0.9.16-1 +- Package Spec generated @@ -0,0 +1 @@ +09b67f27700adec0ee26ed6afb7c7afa pypmml-spark-0.9.16.tar.gz |
