diff options
| author | CoprDistGit <infra@openeuler.org> | 2023-05-05 05:59:23 +0000 |
|---|---|---|
| committer | CoprDistGit <infra@openeuler.org> | 2023-05-05 05:59:23 +0000 |
| commit | e34276970bec7d925d8541f97fc0b334a78ac30d (patch) | |
| tree | 63a09f39958b948293aa742399df494128e0c43e | |
| parent | 5464106359c7ddfd573372f6383cf982f87d194e (diff) | |
automatic import of python-pyradiomicsopeneuler20.03
| -rw-r--r-- | .gitignore | 1 | ||||
| -rw-r--r-- | python-pyradiomics.spec | 586 | ||||
| -rw-r--r-- | sources | 1 |
3 files changed, 588 insertions, 0 deletions
@@ -0,0 +1 @@ +/pyradiomics-3.0.1.tar.gz diff --git a/python-pyradiomics.spec b/python-pyradiomics.spec new file mode 100644 index 0000000..48f9048 --- /dev/null +++ b/python-pyradiomics.spec @@ -0,0 +1,586 @@ +%global _empty_manifest_terminate_build 0 +Name: python-pyradiomics +Version: 3.0.1 +Release: 1 +Summary: Radiomics features library for python +License: BSD License +URL: http://github.com/Radiomics/pyradiomics#readme +Source0: https://mirrors.nju.edu.cn/pypi/web/packages/1b/35/c7f7fb7affd302fd8107dcee6b6e7aaf3708b75ad69d5f9a3dfcadb73eaa/pyradiomics-3.0.1.tar.gz + +Requires: python3-numpy +Requires: python3-SimpleITK +Requires: python3-PyWavelets +Requires: python3-pykwalify +Requires: python3-six + +%description +# pyradiomics v3.0.1 + +## Build Status + +| Linux | macOS | Windows | +|--------------------------------|-------------------------------|-------------------------------| +| [![][circleci]][circleci-lnk] | [![][travisci]][travisci-lnk] | [![][appveyor]][appveyor-lnk] | + + +[appveyor]: https://ci.appveyor.com/api/projects/status/tw69xbbeyluk7fl7/branch/master?svg=true +[appveyor-lnk]: https://ci.appveyor.com/project/Radiomics/pyradiomics/branch/master + +[circleci]: https://circleci.com/gh/Radiomics/pyradiomics.svg?style=svg&circle-token=a4748cf0de5fad2c12bc93a485282378551c3584 +[circleci-lnk]: https://circleci.com/gh/Radiomics/pyradiomics + +[travisci]: https://travis-ci.org/Radiomics/pyradiomics.svg?branch=master +[travisci-lnk]: https://travis-ci.org/Radiomics/pyradiomics + +## Radiomics feature extraction in Python +This is an open-source python package for the extraction of Radiomics features from medical imaging. + +With this package we aim to establish a reference standard for Radiomic Analysis, and provide a tested and maintained +open-source platform for easy and reproducible Radiomic Feature extraction. By doing so, we hope to increase awareness +of radiomic capabilities and expand the community. + +The platform supports both the feature extraction in 2D and 3D and can be used to calculate single values per feature +for a region of interest ("segment-based") or to generate feature maps ("voxel-based"). + +**Not intended for clinical use.** + +**If you publish any work which uses this package, please cite the following publication:** +*van Griethuysen, J. J. M., Fedorov, A., Parmar, C., Hosny, A., Aucoin, N., Narayan, V., Beets-Tan, R. G. H., +Fillion-Robin, J. C., Pieper, S., Aerts, H. J. W. L. (2017). Computational Radiomics System to Decode the Radiographic +Phenotype. Cancer Research, 77(21), e104–e107. https://doi.org/10.1158/0008-5472.CAN-17-0339* + +### Join the Community! +Join the PyRadiomics community on google groups [here](https://groups.google.com/forum/#!forum/pyradiomics). + +### Feature Classes +Currently supports the following feature classes: + + - First Order Statistics + - Shape-based (2D and 3D) + - Gray Level Cooccurence Matrix (GLCM) + - Gray Level Run Length Matrix (GLRLM) + - Gray Level Size Zone Matrix (GLSZM) + - Gray Level Dependece Matrix (GLDM) + - Neighboring Gray Tone Difference Matrix (NGTDM) + +### Filter Classes +Aside from the feature classes, there are also some built-in optional filters: + +- Laplacian of Gaussian (LoG, based on SimpleITK functionality) +- Wavelet (using the PyWavelets package) +- Square +- Square Root +- Logarithm +- Exponential +- Gradient (Magnitude) +- Local Binary Pattern (LBP) 2D / 3D + +### Supporting reproducible extraction +Aside from calculating features, the pyradiomics package includes provenance information in the +output. This information contains information on used image and mask, as well as applied settings +and filters, thereby enabling fully reproducible feature extraction. + +### Documentation +For more information, see the sphinx generated documentation available [here](http://pyradiomics.readthedocs.io/). + +Alternatively, you can generate the documentation by checking out the master branch and running from the root directory: + + python setup.py build_sphinx + +The documentation can then be viewed in a browser by opening `PACKAGE_ROOT\build\sphinx\html\index.html`. + +Furthermore, an instruction video is available [here](http://radiomics.io/pyradiomics.html). + +### Installation +PyRadiomics is OS independent and compatible with Python >= 3.5. Pre-built binaries are available on +PyPi and Conda. To install PyRadiomics, ensure you have python +installed and run: + + `python -m pip install pyradiomics` + +Detailed installation instructions, as well as instructions for building PyRadiomics from source, are available in the +[documentation](http://pyradiomics.readthedocs.io/en/latest/installation.html). + +### Docker +PyRadiomics also supports [Dockers](https://www.docker.com/). Currently, 2 dockers are available: + +The first one is a [Jupyter notebook](http://jupyter.org/) with PyRadiomics pre-installed with example Notebooks. + +To get the Docker: + + docker pull radiomics/pyradiomics:latest + +The `radiomics/notebook` Docker has an exposed volume (`/data`) that can be mapped to the host system directory. For example, to mount the current directory: + + docker run --rm -it --publish 8888:8888 -v `pwd`:/data radiomics/notebook + +or for a less secure notebook, skip the randomly generated token + + docker run --rm -it --publish 8888:8888 -v `pwd`:/data radiomics/notebook start-notebook.sh --NotebookApp.token='' + +and open the local webpage at http://localhost:8888/ with the current directory at http://localhost:8888/tree/data. + +The second is a docker which exposes the PyRadiomics CLI interface. To get the CLI-Docker: + + docker pull radiomics/pyradiomics:CLI + +You can then use the PyRadiomics CLI as follows: + + docker run radiomics/pyradiomics:CLI --help + +For more information on using docker, see +[here](https://pyradiomics.readthedocs.io/en/latest/installation.html#use-pyradiomics-docker) + +### Usage +PyRadiomics can be easily used in a Python script through the `featureextractor` +module. Furthermore, PyRadiomics provides a commandline script, `pyradiomics`, for both single image extraction and +batchprocessing. Finally, a convenient front-end interface is provided as the 'Radiomics' +extension for 3D Slicer, available [here](https://github.com/Radiomics/SlicerRadiomics). + +### 3rd-party packages used in pyradiomics: + - SimpleITK (Image loading and preprocessing) + - numpy (Feature calculation) + - PyWavelets (Wavelet filter) + - pykwalify (Enabling yaml parameters file checking) + - six (Python 3 Compatibility) + - scipy (Only for LBP filter, install separately to enable this filter) + - scikit-image (Only for LBP filter, install separately to enable this filter) + - trimesh (Only for LBP filter, install separately to enable this filter) + +See also the [requirements file](requirements.txt). + +### 3D Slicer +PyRadiomics is also available as an [extension](https://github.com/Radiomics/SlicerRadiomics) to [3D Slicer](slicer.org). +Download and install the 3D slicer [nightly build](http://download.slicer.org/), the extension is then available in the +extension manager under "SlicerRadiomics". + +### License +This package is covered by the open source [3-clause BSD License](LICENSE.txt). + +### Developers + - [Joost van Griethuysen](https://github.com/JoostJM)<sup>1,3,4</sup> + - [Andriy Fedorov](https://github.com/fedorov)<sup>2</sup> + - [Nicole Aucoin](https://github.com/naucoin)<sup>2</sup> + - [Jean-Christophe Fillion-Robin](https://github.com/jcfr)<sup>5</sup> + - [Ahmed Hosny](https://github.com/ahmedhosny)<sup>1</sup> + - [Steve Pieper](https://github.com/pieper)<sup>6</sup> + - [Hugo Aerts (PI)](https://github.com/hugoaerts)<sup>1,2</sup> + +<sup>1</sup>Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, +<sup>2</sup>Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, +<sup>3</sup>Department of Radiology, Netherlands Cancer Institute, Amsterdam, The Netherlands, +<sup>4</sup>GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands, +<sup>5</sup>Kitware, +<sup>6</sup>Isomics + +### Contact +We are happy to help you with any questions. Please contact us on the [Radiomics community section of the 3D Slicer Discourse](https://discourse.slicer.org/c/community/radiomics/23). + +We welcome contributions to PyRadiomics. Please read the [contributing guidelines](CONTRIBUTING.rst) on how to +contribute to PyRadiomics. + +**This work was supported in part by the US National Cancer Institute grant +5U24CA194354, QUANTITATIVE RADIOMICS SYSTEM DECODING THE TUMOR PHENOTYPE.** + + + + +%package -n python3-pyradiomics +Summary: Radiomics features library for python +Provides: python-pyradiomics +BuildRequires: python3-devel +BuildRequires: python3-setuptools +BuildRequires: python3-pip +BuildRequires: python3-cffi +BuildRequires: gcc +BuildRequires: gdb +%description -n python3-pyradiomics +# pyradiomics v3.0.1 + +## Build Status + +| Linux | macOS | Windows | +|--------------------------------|-------------------------------|-------------------------------| +| [![][circleci]][circleci-lnk] | [![][travisci]][travisci-lnk] | [![][appveyor]][appveyor-lnk] | + + +[appveyor]: https://ci.appveyor.com/api/projects/status/tw69xbbeyluk7fl7/branch/master?svg=true +[appveyor-lnk]: https://ci.appveyor.com/project/Radiomics/pyradiomics/branch/master + +[circleci]: https://circleci.com/gh/Radiomics/pyradiomics.svg?style=svg&circle-token=a4748cf0de5fad2c12bc93a485282378551c3584 +[circleci-lnk]: https://circleci.com/gh/Radiomics/pyradiomics + +[travisci]: https://travis-ci.org/Radiomics/pyradiomics.svg?branch=master +[travisci-lnk]: https://travis-ci.org/Radiomics/pyradiomics + +## Radiomics feature extraction in Python +This is an open-source python package for the extraction of Radiomics features from medical imaging. + +With this package we aim to establish a reference standard for Radiomic Analysis, and provide a tested and maintained +open-source platform for easy and reproducible Radiomic Feature extraction. By doing so, we hope to increase awareness +of radiomic capabilities and expand the community. + +The platform supports both the feature extraction in 2D and 3D and can be used to calculate single values per feature +for a region of interest ("segment-based") or to generate feature maps ("voxel-based"). + +**Not intended for clinical use.** + +**If you publish any work which uses this package, please cite the following publication:** +*van Griethuysen, J. J. M., Fedorov, A., Parmar, C., Hosny, A., Aucoin, N., Narayan, V., Beets-Tan, R. G. H., +Fillion-Robin, J. C., Pieper, S., Aerts, H. J. W. L. (2017). Computational Radiomics System to Decode the Radiographic +Phenotype. Cancer Research, 77(21), e104–e107. https://doi.org/10.1158/0008-5472.CAN-17-0339* + +### Join the Community! +Join the PyRadiomics community on google groups [here](https://groups.google.com/forum/#!forum/pyradiomics). + +### Feature Classes +Currently supports the following feature classes: + + - First Order Statistics + - Shape-based (2D and 3D) + - Gray Level Cooccurence Matrix (GLCM) + - Gray Level Run Length Matrix (GLRLM) + - Gray Level Size Zone Matrix (GLSZM) + - Gray Level Dependece Matrix (GLDM) + - Neighboring Gray Tone Difference Matrix (NGTDM) + +### Filter Classes +Aside from the feature classes, there are also some built-in optional filters: + +- Laplacian of Gaussian (LoG, based on SimpleITK functionality) +- Wavelet (using the PyWavelets package) +- Square +- Square Root +- Logarithm +- Exponential +- Gradient (Magnitude) +- Local Binary Pattern (LBP) 2D / 3D + +### Supporting reproducible extraction +Aside from calculating features, the pyradiomics package includes provenance information in the +output. This information contains information on used image and mask, as well as applied settings +and filters, thereby enabling fully reproducible feature extraction. + +### Documentation +For more information, see the sphinx generated documentation available [here](http://pyradiomics.readthedocs.io/). + +Alternatively, you can generate the documentation by checking out the master branch and running from the root directory: + + python setup.py build_sphinx + +The documentation can then be viewed in a browser by opening `PACKAGE_ROOT\build\sphinx\html\index.html`. + +Furthermore, an instruction video is available [here](http://radiomics.io/pyradiomics.html). + +### Installation +PyRadiomics is OS independent and compatible with Python >= 3.5. Pre-built binaries are available on +PyPi and Conda. To install PyRadiomics, ensure you have python +installed and run: + + `python -m pip install pyradiomics` + +Detailed installation instructions, as well as instructions for building PyRadiomics from source, are available in the +[documentation](http://pyradiomics.readthedocs.io/en/latest/installation.html). + +### Docker +PyRadiomics also supports [Dockers](https://www.docker.com/). Currently, 2 dockers are available: + +The first one is a [Jupyter notebook](http://jupyter.org/) with PyRadiomics pre-installed with example Notebooks. + +To get the Docker: + + docker pull radiomics/pyradiomics:latest + +The `radiomics/notebook` Docker has an exposed volume (`/data`) that can be mapped to the host system directory. For example, to mount the current directory: + + docker run --rm -it --publish 8888:8888 -v `pwd`:/data radiomics/notebook + +or for a less secure notebook, skip the randomly generated token + + docker run --rm -it --publish 8888:8888 -v `pwd`:/data radiomics/notebook start-notebook.sh --NotebookApp.token='' + +and open the local webpage at http://localhost:8888/ with the current directory at http://localhost:8888/tree/data. + +The second is a docker which exposes the PyRadiomics CLI interface. To get the CLI-Docker: + + docker pull radiomics/pyradiomics:CLI + +You can then use the PyRadiomics CLI as follows: + + docker run radiomics/pyradiomics:CLI --help + +For more information on using docker, see +[here](https://pyradiomics.readthedocs.io/en/latest/installation.html#use-pyradiomics-docker) + +### Usage +PyRadiomics can be easily used in a Python script through the `featureextractor` +module. Furthermore, PyRadiomics provides a commandline script, `pyradiomics`, for both single image extraction and +batchprocessing. Finally, a convenient front-end interface is provided as the 'Radiomics' +extension for 3D Slicer, available [here](https://github.com/Radiomics/SlicerRadiomics). + +### 3rd-party packages used in pyradiomics: + - SimpleITK (Image loading and preprocessing) + - numpy (Feature calculation) + - PyWavelets (Wavelet filter) + - pykwalify (Enabling yaml parameters file checking) + - six (Python 3 Compatibility) + - scipy (Only for LBP filter, install separately to enable this filter) + - scikit-image (Only for LBP filter, install separately to enable this filter) + - trimesh (Only for LBP filter, install separately to enable this filter) + +See also the [requirements file](requirements.txt). + +### 3D Slicer +PyRadiomics is also available as an [extension](https://github.com/Radiomics/SlicerRadiomics) to [3D Slicer](slicer.org). +Download and install the 3D slicer [nightly build](http://download.slicer.org/), the extension is then available in the +extension manager under "SlicerRadiomics". + +### License +This package is covered by the open source [3-clause BSD License](LICENSE.txt). + +### Developers + - [Joost van Griethuysen](https://github.com/JoostJM)<sup>1,3,4</sup> + - [Andriy Fedorov](https://github.com/fedorov)<sup>2</sup> + - [Nicole Aucoin](https://github.com/naucoin)<sup>2</sup> + - [Jean-Christophe Fillion-Robin](https://github.com/jcfr)<sup>5</sup> + - [Ahmed Hosny](https://github.com/ahmedhosny)<sup>1</sup> + - [Steve Pieper](https://github.com/pieper)<sup>6</sup> + - [Hugo Aerts (PI)](https://github.com/hugoaerts)<sup>1,2</sup> + +<sup>1</sup>Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, +<sup>2</sup>Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, +<sup>3</sup>Department of Radiology, Netherlands Cancer Institute, Amsterdam, The Netherlands, +<sup>4</sup>GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands, +<sup>5</sup>Kitware, +<sup>6</sup>Isomics + +### Contact +We are happy to help you with any questions. Please contact us on the [Radiomics community section of the 3D Slicer Discourse](https://discourse.slicer.org/c/community/radiomics/23). + +We welcome contributions to PyRadiomics. Please read the [contributing guidelines](CONTRIBUTING.rst) on how to +contribute to PyRadiomics. + +**This work was supported in part by the US National Cancer Institute grant +5U24CA194354, QUANTITATIVE RADIOMICS SYSTEM DECODING THE TUMOR PHENOTYPE.** + + + + +%package help +Summary: Development documents and examples for pyradiomics +Provides: python3-pyradiomics-doc +%description help +# pyradiomics v3.0.1 + +## Build Status + +| Linux | macOS | Windows | +|--------------------------------|-------------------------------|-------------------------------| +| [![][circleci]][circleci-lnk] | [![][travisci]][travisci-lnk] | [![][appveyor]][appveyor-lnk] | + + +[appveyor]: https://ci.appveyor.com/api/projects/status/tw69xbbeyluk7fl7/branch/master?svg=true +[appveyor-lnk]: https://ci.appveyor.com/project/Radiomics/pyradiomics/branch/master + +[circleci]: https://circleci.com/gh/Radiomics/pyradiomics.svg?style=svg&circle-token=a4748cf0de5fad2c12bc93a485282378551c3584 +[circleci-lnk]: https://circleci.com/gh/Radiomics/pyradiomics + +[travisci]: https://travis-ci.org/Radiomics/pyradiomics.svg?branch=master +[travisci-lnk]: https://travis-ci.org/Radiomics/pyradiomics + +## Radiomics feature extraction in Python +This is an open-source python package for the extraction of Radiomics features from medical imaging. + +With this package we aim to establish a reference standard for Radiomic Analysis, and provide a tested and maintained +open-source platform for easy and reproducible Radiomic Feature extraction. By doing so, we hope to increase awareness +of radiomic capabilities and expand the community. + +The platform supports both the feature extraction in 2D and 3D and can be used to calculate single values per feature +for a region of interest ("segment-based") or to generate feature maps ("voxel-based"). + +**Not intended for clinical use.** + +**If you publish any work which uses this package, please cite the following publication:** +*van Griethuysen, J. J. M., Fedorov, A., Parmar, C., Hosny, A., Aucoin, N., Narayan, V., Beets-Tan, R. G. H., +Fillion-Robin, J. C., Pieper, S., Aerts, H. J. W. L. (2017). Computational Radiomics System to Decode the Radiographic +Phenotype. Cancer Research, 77(21), e104–e107. https://doi.org/10.1158/0008-5472.CAN-17-0339* + +### Join the Community! +Join the PyRadiomics community on google groups [here](https://groups.google.com/forum/#!forum/pyradiomics). + +### Feature Classes +Currently supports the following feature classes: + + - First Order Statistics + - Shape-based (2D and 3D) + - Gray Level Cooccurence Matrix (GLCM) + - Gray Level Run Length Matrix (GLRLM) + - Gray Level Size Zone Matrix (GLSZM) + - Gray Level Dependece Matrix (GLDM) + - Neighboring Gray Tone Difference Matrix (NGTDM) + +### Filter Classes +Aside from the feature classes, there are also some built-in optional filters: + +- Laplacian of Gaussian (LoG, based on SimpleITK functionality) +- Wavelet (using the PyWavelets package) +- Square +- Square Root +- Logarithm +- Exponential +- Gradient (Magnitude) +- Local Binary Pattern (LBP) 2D / 3D + +### Supporting reproducible extraction +Aside from calculating features, the pyradiomics package includes provenance information in the +output. This information contains information on used image and mask, as well as applied settings +and filters, thereby enabling fully reproducible feature extraction. + +### Documentation +For more information, see the sphinx generated documentation available [here](http://pyradiomics.readthedocs.io/). + +Alternatively, you can generate the documentation by checking out the master branch and running from the root directory: + + python setup.py build_sphinx + +The documentation can then be viewed in a browser by opening `PACKAGE_ROOT\build\sphinx\html\index.html`. + +Furthermore, an instruction video is available [here](http://radiomics.io/pyradiomics.html). + +### Installation +PyRadiomics is OS independent and compatible with Python >= 3.5. Pre-built binaries are available on +PyPi and Conda. To install PyRadiomics, ensure you have python +installed and run: + + `python -m pip install pyradiomics` + +Detailed installation instructions, as well as instructions for building PyRadiomics from source, are available in the +[documentation](http://pyradiomics.readthedocs.io/en/latest/installation.html). + +### Docker +PyRadiomics also supports [Dockers](https://www.docker.com/). Currently, 2 dockers are available: + +The first one is a [Jupyter notebook](http://jupyter.org/) with PyRadiomics pre-installed with example Notebooks. + +To get the Docker: + + docker pull radiomics/pyradiomics:latest + +The `radiomics/notebook` Docker has an exposed volume (`/data`) that can be mapped to the host system directory. For example, to mount the current directory: + + docker run --rm -it --publish 8888:8888 -v `pwd`:/data radiomics/notebook + +or for a less secure notebook, skip the randomly generated token + + docker run --rm -it --publish 8888:8888 -v `pwd`:/data radiomics/notebook start-notebook.sh --NotebookApp.token='' + +and open the local webpage at http://localhost:8888/ with the current directory at http://localhost:8888/tree/data. + +The second is a docker which exposes the PyRadiomics CLI interface. To get the CLI-Docker: + + docker pull radiomics/pyradiomics:CLI + +You can then use the PyRadiomics CLI as follows: + + docker run radiomics/pyradiomics:CLI --help + +For more information on using docker, see +[here](https://pyradiomics.readthedocs.io/en/latest/installation.html#use-pyradiomics-docker) + +### Usage +PyRadiomics can be easily used in a Python script through the `featureextractor` +module. Furthermore, PyRadiomics provides a commandline script, `pyradiomics`, for both single image extraction and +batchprocessing. Finally, a convenient front-end interface is provided as the 'Radiomics' +extension for 3D Slicer, available [here](https://github.com/Radiomics/SlicerRadiomics). + +### 3rd-party packages used in pyradiomics: + - SimpleITK (Image loading and preprocessing) + - numpy (Feature calculation) + - PyWavelets (Wavelet filter) + - pykwalify (Enabling yaml parameters file checking) + - six (Python 3 Compatibility) + - scipy (Only for LBP filter, install separately to enable this filter) + - scikit-image (Only for LBP filter, install separately to enable this filter) + - trimesh (Only for LBP filter, install separately to enable this filter) + +See also the [requirements file](requirements.txt). + +### 3D Slicer +PyRadiomics is also available as an [extension](https://github.com/Radiomics/SlicerRadiomics) to [3D Slicer](slicer.org). +Download and install the 3D slicer [nightly build](http://download.slicer.org/), the extension is then available in the +extension manager under "SlicerRadiomics". + +### License +This package is covered by the open source [3-clause BSD License](LICENSE.txt). + +### Developers + - [Joost van Griethuysen](https://github.com/JoostJM)<sup>1,3,4</sup> + - [Andriy Fedorov](https://github.com/fedorov)<sup>2</sup> + - [Nicole Aucoin](https://github.com/naucoin)<sup>2</sup> + - [Jean-Christophe Fillion-Robin](https://github.com/jcfr)<sup>5</sup> + - [Ahmed Hosny](https://github.com/ahmedhosny)<sup>1</sup> + - [Steve Pieper](https://github.com/pieper)<sup>6</sup> + - [Hugo Aerts (PI)](https://github.com/hugoaerts)<sup>1,2</sup> + +<sup>1</sup>Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, +<sup>2</sup>Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, +<sup>3</sup>Department of Radiology, Netherlands Cancer Institute, Amsterdam, The Netherlands, +<sup>4</sup>GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands, +<sup>5</sup>Kitware, +<sup>6</sup>Isomics + +### Contact +We are happy to help you with any questions. Please contact us on the [Radiomics community section of the 3D Slicer Discourse](https://discourse.slicer.org/c/community/radiomics/23). + +We welcome contributions to PyRadiomics. Please read the [contributing guidelines](CONTRIBUTING.rst) on how to +contribute to PyRadiomics. + +**This work was supported in part by the US National Cancer Institute grant +5U24CA194354, QUANTITATIVE RADIOMICS SYSTEM DECODING THE TUMOR PHENOTYPE.** + + + + +%prep +%autosetup -n pyradiomics-3.0.1 + +%build +%py3_build + +%install +%py3_install +install -d -m755 %{buildroot}/%{_pkgdocdir} +if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi +if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi +if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi +if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi +pushd %{buildroot} +if [ -d usr/lib ]; then + find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/lib64 ]; then + find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/bin ]; then + find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/sbin ]; then + find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst +fi +touch doclist.lst +if [ -d usr/share/man ]; then + find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst +fi +popd +mv %{buildroot}/filelist.lst . +mv %{buildroot}/doclist.lst . + +%files -n python3-pyradiomics -f filelist.lst +%dir %{python3_sitearch}/* + +%files help -f doclist.lst +%{_docdir}/* + +%changelog +* Fri May 05 2023 Python_Bot <Python_Bot@openeuler.org> - 3.0.1-1 +- Package Spec generated @@ -0,0 +1 @@ +6c9ea1051be999265240fae5c9f4d088 pyradiomics-3.0.1.tar.gz |
