summaryrefslogtreecommitdiff
path: root/python-pyradiomics.spec
blob: 48f9048e0caa969da250c58cf0472536a37cb748 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
%global _empty_manifest_terminate_build 0
Name:		python-pyradiomics
Version:	3.0.1
Release:	1
Summary:	Radiomics features library for python
License:	BSD License
URL:		http://github.com/Radiomics/pyradiomics#readme
Source0:	https://mirrors.nju.edu.cn/pypi/web/packages/1b/35/c7f7fb7affd302fd8107dcee6b6e7aaf3708b75ad69d5f9a3dfcadb73eaa/pyradiomics-3.0.1.tar.gz

Requires:	python3-numpy
Requires:	python3-SimpleITK
Requires:	python3-PyWavelets
Requires:	python3-pykwalify
Requires:	python3-six

%description
# pyradiomics v3.0.1

## Build Status

| Linux                          | macOS                         | Windows                       |
|--------------------------------|-------------------------------|-------------------------------|
| [![][circleci]][circleci-lnk]  | [![][travisci]][travisci-lnk] | [![][appveyor]][appveyor-lnk] |


[appveyor]: https://ci.appveyor.com/api/projects/status/tw69xbbeyluk7fl7/branch/master?svg=true
[appveyor-lnk]: https://ci.appveyor.com/project/Radiomics/pyradiomics/branch/master

[circleci]: https://circleci.com/gh/Radiomics/pyradiomics.svg?style=svg&circle-token=a4748cf0de5fad2c12bc93a485282378551c3584
[circleci-lnk]: https://circleci.com/gh/Radiomics/pyradiomics

[travisci]: https://travis-ci.org/Radiomics/pyradiomics.svg?branch=master
[travisci-lnk]: https://travis-ci.org/Radiomics/pyradiomics

## Radiomics feature extraction in Python
This is an open-source python package for the extraction of Radiomics features from medical imaging.

With this package we aim to establish a reference standard for Radiomic Analysis, and provide a tested and maintained
open-source platform for easy and reproducible Radiomic Feature extraction. By doing so, we hope to increase awareness
of radiomic capabilities and expand the community.

The platform supports both the feature extraction in 2D and 3D and can be used to calculate single values per feature
for a region of interest ("segment-based") or to generate feature maps ("voxel-based"). 

**Not intended for clinical use.**

**If you publish any work which uses this package, please cite the following publication:**
*van Griethuysen, J. J. M., Fedorov, A., Parmar, C., Hosny, A., Aucoin, N., Narayan, V., Beets-Tan, R. G. H.,
Fillion-Robin, J. C., Pieper, S.,  Aerts, H. J. W. L. (2017). Computational Radiomics System to Decode the Radiographic
Phenotype. Cancer Research, 77(21), e104–e107. https://doi.org/10.1158/0008-5472.CAN-17-0339*

### Join the Community!
Join the PyRadiomics community on google groups [here](https://groups.google.com/forum/#!forum/pyradiomics).

### Feature Classes
Currently supports the following feature classes:

 - First Order Statistics
 - Shape-based (2D and 3D)
 - Gray Level Cooccurence Matrix (GLCM)
 - Gray Level Run Length Matrix (GLRLM)
 - Gray Level Size Zone Matrix (GLSZM)
 - Gray Level Dependece Matrix (GLDM)
 - Neighboring Gray Tone Difference Matrix (NGTDM)

### Filter Classes
Aside from the feature classes, there are also some built-in optional filters:

- Laplacian of Gaussian (LoG, based on SimpleITK functionality)
- Wavelet (using the PyWavelets package)
- Square
- Square Root
- Logarithm
- Exponential
- Gradient (Magnitude)
- Local Binary Pattern (LBP) 2D / 3D

### Supporting reproducible extraction
Aside from calculating features, the pyradiomics package includes provenance information in the
output. This information contains information on used image and mask, as well as applied settings
and filters, thereby enabling fully reproducible feature extraction.

### Documentation
For more information, see the sphinx generated documentation available [here](http://pyradiomics.readthedocs.io/).

Alternatively, you can generate the documentation by checking out the master branch and running from the root directory:

    python setup.py build_sphinx

The documentation can then be viewed in a browser by opening `PACKAGE_ROOT\build\sphinx\html\index.html`. 

Furthermore, an instruction video is available [here](http://radiomics.io/pyradiomics.html).

### Installation
PyRadiomics is OS independent and compatible with Python >= 3.5. Pre-built binaries are available on
PyPi and Conda. To install PyRadiomics, ensure you have python
installed and run:

    `python -m pip install pyradiomics`

Detailed installation instructions, as well as instructions for building PyRadiomics from source, are available in the 
[documentation](http://pyradiomics.readthedocs.io/en/latest/installation.html).

### Docker
PyRadiomics also supports [Dockers](https://www.docker.com/).  Currently, 2 dockers are available:

The first one is a [Jupyter notebook](http://jupyter.org/) with PyRadiomics pre-installed with example Notebooks. 

To get the Docker:

    docker pull radiomics/pyradiomics:latest

The `radiomics/notebook` Docker has an exposed volume (`/data`) that can be mapped to the host system directory.  For example, to mount the current directory:

    docker run --rm -it --publish 8888:8888 -v `pwd`:/data radiomics/notebook

or for a less secure notebook, skip the randomly generated token

    docker run --rm -it --publish 8888:8888 -v `pwd`:/data radiomics/notebook start-notebook.sh --NotebookApp.token=''

and open the local webpage at http://localhost:8888/ with the current directory at http://localhost:8888/tree/data.

The second is a docker which exposes the PyRadiomics CLI interface. To get the CLI-Docker:

    docker pull radiomics/pyradiomics:CLI

You can then use the PyRadiomics CLI as follows:

    docker run radiomics/pyradiomics:CLI --help

For more information on using docker, see
[here](https://pyradiomics.readthedocs.io/en/latest/installation.html#use-pyradiomics-docker)

### Usage
PyRadiomics can be easily used in a Python script through the `featureextractor`
module. Furthermore, PyRadiomics provides a commandline script, `pyradiomics`, for both single image extraction and 
batchprocessing. Finally, a convenient front-end interface is provided as the 'Radiomics'
extension for 3D Slicer, available [here](https://github.com/Radiomics/SlicerRadiomics).

### 3rd-party packages used in pyradiomics:
 - SimpleITK (Image loading and preprocessing)
 - numpy (Feature calculation)
 - PyWavelets (Wavelet filter)
 - pykwalify (Enabling yaml parameters file checking)
 - six (Python 3 Compatibility)
 - scipy (Only for LBP filter, install separately to enable this filter)
 - scikit-image (Only for LBP filter, install separately to enable this filter)
 - trimesh (Only for LBP filter, install separately to enable this filter)

See also the [requirements file](requirements.txt).

### 3D Slicer
PyRadiomics is also available as an [extension](https://github.com/Radiomics/SlicerRadiomics) to [3D Slicer](slicer.org). 
Download and install the 3D slicer [nightly build](http://download.slicer.org/), the extension is then available in the
extension manager under "SlicerRadiomics".

### License
This package is covered by the open source [3-clause BSD License](LICENSE.txt).

### Developers
 - [Joost van Griethuysen](https://github.com/JoostJM)<sup>1,3,4</sup>
 - [Andriy Fedorov](https://github.com/fedorov)<sup>2</sup>
 - [Nicole Aucoin](https://github.com/naucoin)<sup>2</sup>
 - [Jean-Christophe Fillion-Robin](https://github.com/jcfr)<sup>5</sup>
 - [Ahmed Hosny](https://github.com/ahmedhosny)<sup>1</sup>
 - [Steve Pieper](https://github.com/pieper)<sup>6</sup>
 - [Hugo Aerts (PI)](https://github.com/hugoaerts)<sup>1,2</sup>

<sup>1</sup>Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Harvard Medical School, Boston, MA,
<sup>2</sup>Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA,
<sup>3</sup>Department of Radiology, Netherlands Cancer Institute, Amsterdam, The Netherlands, 
<sup>4</sup>GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands,
<sup>5</sup>Kitware,
<sup>6</sup>Isomics

### Contact
We are happy to help you with any questions. Please contact us on the [Radiomics community section of the 3D Slicer Discourse](https://discourse.slicer.org/c/community/radiomics/23).

We welcome contributions to PyRadiomics. Please read the [contributing guidelines](CONTRIBUTING.rst) on how to
contribute to PyRadiomics.

**This work was supported in part by the US National Cancer Institute grant 
5U24CA194354, QUANTITATIVE RADIOMICS SYSTEM DECODING THE TUMOR PHENOTYPE.**




%package -n python3-pyradiomics
Summary:	Radiomics features library for python
Provides:	python-pyradiomics
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
BuildRequires:	python3-cffi
BuildRequires:	gcc
BuildRequires:	gdb
%description -n python3-pyradiomics
# pyradiomics v3.0.1

## Build Status

| Linux                          | macOS                         | Windows                       |
|--------------------------------|-------------------------------|-------------------------------|
| [![][circleci]][circleci-lnk]  | [![][travisci]][travisci-lnk] | [![][appveyor]][appveyor-lnk] |


[appveyor]: https://ci.appveyor.com/api/projects/status/tw69xbbeyluk7fl7/branch/master?svg=true
[appveyor-lnk]: https://ci.appveyor.com/project/Radiomics/pyradiomics/branch/master

[circleci]: https://circleci.com/gh/Radiomics/pyradiomics.svg?style=svg&circle-token=a4748cf0de5fad2c12bc93a485282378551c3584
[circleci-lnk]: https://circleci.com/gh/Radiomics/pyradiomics

[travisci]: https://travis-ci.org/Radiomics/pyradiomics.svg?branch=master
[travisci-lnk]: https://travis-ci.org/Radiomics/pyradiomics

## Radiomics feature extraction in Python
This is an open-source python package for the extraction of Radiomics features from medical imaging.

With this package we aim to establish a reference standard for Radiomic Analysis, and provide a tested and maintained
open-source platform for easy and reproducible Radiomic Feature extraction. By doing so, we hope to increase awareness
of radiomic capabilities and expand the community.

The platform supports both the feature extraction in 2D and 3D and can be used to calculate single values per feature
for a region of interest ("segment-based") or to generate feature maps ("voxel-based"). 

**Not intended for clinical use.**

**If you publish any work which uses this package, please cite the following publication:**
*van Griethuysen, J. J. M., Fedorov, A., Parmar, C., Hosny, A., Aucoin, N., Narayan, V., Beets-Tan, R. G. H.,
Fillion-Robin, J. C., Pieper, S.,  Aerts, H. J. W. L. (2017). Computational Radiomics System to Decode the Radiographic
Phenotype. Cancer Research, 77(21), e104–e107. https://doi.org/10.1158/0008-5472.CAN-17-0339*

### Join the Community!
Join the PyRadiomics community on google groups [here](https://groups.google.com/forum/#!forum/pyradiomics).

### Feature Classes
Currently supports the following feature classes:

 - First Order Statistics
 - Shape-based (2D and 3D)
 - Gray Level Cooccurence Matrix (GLCM)
 - Gray Level Run Length Matrix (GLRLM)
 - Gray Level Size Zone Matrix (GLSZM)
 - Gray Level Dependece Matrix (GLDM)
 - Neighboring Gray Tone Difference Matrix (NGTDM)

### Filter Classes
Aside from the feature classes, there are also some built-in optional filters:

- Laplacian of Gaussian (LoG, based on SimpleITK functionality)
- Wavelet (using the PyWavelets package)
- Square
- Square Root
- Logarithm
- Exponential
- Gradient (Magnitude)
- Local Binary Pattern (LBP) 2D / 3D

### Supporting reproducible extraction
Aside from calculating features, the pyradiomics package includes provenance information in the
output. This information contains information on used image and mask, as well as applied settings
and filters, thereby enabling fully reproducible feature extraction.

### Documentation
For more information, see the sphinx generated documentation available [here](http://pyradiomics.readthedocs.io/).

Alternatively, you can generate the documentation by checking out the master branch and running from the root directory:

    python setup.py build_sphinx

The documentation can then be viewed in a browser by opening `PACKAGE_ROOT\build\sphinx\html\index.html`. 

Furthermore, an instruction video is available [here](http://radiomics.io/pyradiomics.html).

### Installation
PyRadiomics is OS independent and compatible with Python >= 3.5. Pre-built binaries are available on
PyPi and Conda. To install PyRadiomics, ensure you have python
installed and run:

    `python -m pip install pyradiomics`

Detailed installation instructions, as well as instructions for building PyRadiomics from source, are available in the 
[documentation](http://pyradiomics.readthedocs.io/en/latest/installation.html).

### Docker
PyRadiomics also supports [Dockers](https://www.docker.com/).  Currently, 2 dockers are available:

The first one is a [Jupyter notebook](http://jupyter.org/) with PyRadiomics pre-installed with example Notebooks. 

To get the Docker:

    docker pull radiomics/pyradiomics:latest

The `radiomics/notebook` Docker has an exposed volume (`/data`) that can be mapped to the host system directory.  For example, to mount the current directory:

    docker run --rm -it --publish 8888:8888 -v `pwd`:/data radiomics/notebook

or for a less secure notebook, skip the randomly generated token

    docker run --rm -it --publish 8888:8888 -v `pwd`:/data radiomics/notebook start-notebook.sh --NotebookApp.token=''

and open the local webpage at http://localhost:8888/ with the current directory at http://localhost:8888/tree/data.

The second is a docker which exposes the PyRadiomics CLI interface. To get the CLI-Docker:

    docker pull radiomics/pyradiomics:CLI

You can then use the PyRadiomics CLI as follows:

    docker run radiomics/pyradiomics:CLI --help

For more information on using docker, see
[here](https://pyradiomics.readthedocs.io/en/latest/installation.html#use-pyradiomics-docker)

### Usage
PyRadiomics can be easily used in a Python script through the `featureextractor`
module. Furthermore, PyRadiomics provides a commandline script, `pyradiomics`, for both single image extraction and 
batchprocessing. Finally, a convenient front-end interface is provided as the 'Radiomics'
extension for 3D Slicer, available [here](https://github.com/Radiomics/SlicerRadiomics).

### 3rd-party packages used in pyradiomics:
 - SimpleITK (Image loading and preprocessing)
 - numpy (Feature calculation)
 - PyWavelets (Wavelet filter)
 - pykwalify (Enabling yaml parameters file checking)
 - six (Python 3 Compatibility)
 - scipy (Only for LBP filter, install separately to enable this filter)
 - scikit-image (Only for LBP filter, install separately to enable this filter)
 - trimesh (Only for LBP filter, install separately to enable this filter)

See also the [requirements file](requirements.txt).

### 3D Slicer
PyRadiomics is also available as an [extension](https://github.com/Radiomics/SlicerRadiomics) to [3D Slicer](slicer.org). 
Download and install the 3D slicer [nightly build](http://download.slicer.org/), the extension is then available in the
extension manager under "SlicerRadiomics".

### License
This package is covered by the open source [3-clause BSD License](LICENSE.txt).

### Developers
 - [Joost van Griethuysen](https://github.com/JoostJM)<sup>1,3,4</sup>
 - [Andriy Fedorov](https://github.com/fedorov)<sup>2</sup>
 - [Nicole Aucoin](https://github.com/naucoin)<sup>2</sup>
 - [Jean-Christophe Fillion-Robin](https://github.com/jcfr)<sup>5</sup>
 - [Ahmed Hosny](https://github.com/ahmedhosny)<sup>1</sup>
 - [Steve Pieper](https://github.com/pieper)<sup>6</sup>
 - [Hugo Aerts (PI)](https://github.com/hugoaerts)<sup>1,2</sup>

<sup>1</sup>Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Harvard Medical School, Boston, MA,
<sup>2</sup>Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA,
<sup>3</sup>Department of Radiology, Netherlands Cancer Institute, Amsterdam, The Netherlands, 
<sup>4</sup>GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands,
<sup>5</sup>Kitware,
<sup>6</sup>Isomics

### Contact
We are happy to help you with any questions. Please contact us on the [Radiomics community section of the 3D Slicer Discourse](https://discourse.slicer.org/c/community/radiomics/23).

We welcome contributions to PyRadiomics. Please read the [contributing guidelines](CONTRIBUTING.rst) on how to
contribute to PyRadiomics.

**This work was supported in part by the US National Cancer Institute grant 
5U24CA194354, QUANTITATIVE RADIOMICS SYSTEM DECODING THE TUMOR PHENOTYPE.**




%package help
Summary:	Development documents and examples for pyradiomics
Provides:	python3-pyradiomics-doc
%description help
# pyradiomics v3.0.1

## Build Status

| Linux                          | macOS                         | Windows                       |
|--------------------------------|-------------------------------|-------------------------------|
| [![][circleci]][circleci-lnk]  | [![][travisci]][travisci-lnk] | [![][appveyor]][appveyor-lnk] |


[appveyor]: https://ci.appveyor.com/api/projects/status/tw69xbbeyluk7fl7/branch/master?svg=true
[appveyor-lnk]: https://ci.appveyor.com/project/Radiomics/pyradiomics/branch/master

[circleci]: https://circleci.com/gh/Radiomics/pyradiomics.svg?style=svg&circle-token=a4748cf0de5fad2c12bc93a485282378551c3584
[circleci-lnk]: https://circleci.com/gh/Radiomics/pyradiomics

[travisci]: https://travis-ci.org/Radiomics/pyradiomics.svg?branch=master
[travisci-lnk]: https://travis-ci.org/Radiomics/pyradiomics

## Radiomics feature extraction in Python
This is an open-source python package for the extraction of Radiomics features from medical imaging.

With this package we aim to establish a reference standard for Radiomic Analysis, and provide a tested and maintained
open-source platform for easy and reproducible Radiomic Feature extraction. By doing so, we hope to increase awareness
of radiomic capabilities and expand the community.

The platform supports both the feature extraction in 2D and 3D and can be used to calculate single values per feature
for a region of interest ("segment-based") or to generate feature maps ("voxel-based"). 

**Not intended for clinical use.**

**If you publish any work which uses this package, please cite the following publication:**
*van Griethuysen, J. J. M., Fedorov, A., Parmar, C., Hosny, A., Aucoin, N., Narayan, V., Beets-Tan, R. G. H.,
Fillion-Robin, J. C., Pieper, S.,  Aerts, H. J. W. L. (2017). Computational Radiomics System to Decode the Radiographic
Phenotype. Cancer Research, 77(21), e104–e107. https://doi.org/10.1158/0008-5472.CAN-17-0339*

### Join the Community!
Join the PyRadiomics community on google groups [here](https://groups.google.com/forum/#!forum/pyradiomics).

### Feature Classes
Currently supports the following feature classes:

 - First Order Statistics
 - Shape-based (2D and 3D)
 - Gray Level Cooccurence Matrix (GLCM)
 - Gray Level Run Length Matrix (GLRLM)
 - Gray Level Size Zone Matrix (GLSZM)
 - Gray Level Dependece Matrix (GLDM)
 - Neighboring Gray Tone Difference Matrix (NGTDM)

### Filter Classes
Aside from the feature classes, there are also some built-in optional filters:

- Laplacian of Gaussian (LoG, based on SimpleITK functionality)
- Wavelet (using the PyWavelets package)
- Square
- Square Root
- Logarithm
- Exponential
- Gradient (Magnitude)
- Local Binary Pattern (LBP) 2D / 3D

### Supporting reproducible extraction
Aside from calculating features, the pyradiomics package includes provenance information in the
output. This information contains information on used image and mask, as well as applied settings
and filters, thereby enabling fully reproducible feature extraction.

### Documentation
For more information, see the sphinx generated documentation available [here](http://pyradiomics.readthedocs.io/).

Alternatively, you can generate the documentation by checking out the master branch and running from the root directory:

    python setup.py build_sphinx

The documentation can then be viewed in a browser by opening `PACKAGE_ROOT\build\sphinx\html\index.html`. 

Furthermore, an instruction video is available [here](http://radiomics.io/pyradiomics.html).

### Installation
PyRadiomics is OS independent and compatible with Python >= 3.5. Pre-built binaries are available on
PyPi and Conda. To install PyRadiomics, ensure you have python
installed and run:

    `python -m pip install pyradiomics`

Detailed installation instructions, as well as instructions for building PyRadiomics from source, are available in the 
[documentation](http://pyradiomics.readthedocs.io/en/latest/installation.html).

### Docker
PyRadiomics also supports [Dockers](https://www.docker.com/).  Currently, 2 dockers are available:

The first one is a [Jupyter notebook](http://jupyter.org/) with PyRadiomics pre-installed with example Notebooks. 

To get the Docker:

    docker pull radiomics/pyradiomics:latest

The `radiomics/notebook` Docker has an exposed volume (`/data`) that can be mapped to the host system directory.  For example, to mount the current directory:

    docker run --rm -it --publish 8888:8888 -v `pwd`:/data radiomics/notebook

or for a less secure notebook, skip the randomly generated token

    docker run --rm -it --publish 8888:8888 -v `pwd`:/data radiomics/notebook start-notebook.sh --NotebookApp.token=''

and open the local webpage at http://localhost:8888/ with the current directory at http://localhost:8888/tree/data.

The second is a docker which exposes the PyRadiomics CLI interface. To get the CLI-Docker:

    docker pull radiomics/pyradiomics:CLI

You can then use the PyRadiomics CLI as follows:

    docker run radiomics/pyradiomics:CLI --help

For more information on using docker, see
[here](https://pyradiomics.readthedocs.io/en/latest/installation.html#use-pyradiomics-docker)

### Usage
PyRadiomics can be easily used in a Python script through the `featureextractor`
module. Furthermore, PyRadiomics provides a commandline script, `pyradiomics`, for both single image extraction and 
batchprocessing. Finally, a convenient front-end interface is provided as the 'Radiomics'
extension for 3D Slicer, available [here](https://github.com/Radiomics/SlicerRadiomics).

### 3rd-party packages used in pyradiomics:
 - SimpleITK (Image loading and preprocessing)
 - numpy (Feature calculation)
 - PyWavelets (Wavelet filter)
 - pykwalify (Enabling yaml parameters file checking)
 - six (Python 3 Compatibility)
 - scipy (Only for LBP filter, install separately to enable this filter)
 - scikit-image (Only for LBP filter, install separately to enable this filter)
 - trimesh (Only for LBP filter, install separately to enable this filter)

See also the [requirements file](requirements.txt).

### 3D Slicer
PyRadiomics is also available as an [extension](https://github.com/Radiomics/SlicerRadiomics) to [3D Slicer](slicer.org). 
Download and install the 3D slicer [nightly build](http://download.slicer.org/), the extension is then available in the
extension manager under "SlicerRadiomics".

### License
This package is covered by the open source [3-clause BSD License](LICENSE.txt).

### Developers
 - [Joost van Griethuysen](https://github.com/JoostJM)<sup>1,3,4</sup>
 - [Andriy Fedorov](https://github.com/fedorov)<sup>2</sup>
 - [Nicole Aucoin](https://github.com/naucoin)<sup>2</sup>
 - [Jean-Christophe Fillion-Robin](https://github.com/jcfr)<sup>5</sup>
 - [Ahmed Hosny](https://github.com/ahmedhosny)<sup>1</sup>
 - [Steve Pieper](https://github.com/pieper)<sup>6</sup>
 - [Hugo Aerts (PI)](https://github.com/hugoaerts)<sup>1,2</sup>

<sup>1</sup>Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Harvard Medical School, Boston, MA,
<sup>2</sup>Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA,
<sup>3</sup>Department of Radiology, Netherlands Cancer Institute, Amsterdam, The Netherlands, 
<sup>4</sup>GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands,
<sup>5</sup>Kitware,
<sup>6</sup>Isomics

### Contact
We are happy to help you with any questions. Please contact us on the [Radiomics community section of the 3D Slicer Discourse](https://discourse.slicer.org/c/community/radiomics/23).

We welcome contributions to PyRadiomics. Please read the [contributing guidelines](CONTRIBUTING.rst) on how to
contribute to PyRadiomics.

**This work was supported in part by the US National Cancer Institute grant 
5U24CA194354, QUANTITATIVE RADIOMICS SYSTEM DECODING THE TUMOR PHENOTYPE.**




%prep
%autosetup -n pyradiomics-3.0.1

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-pyradiomics -f filelist.lst
%dir %{python3_sitearch}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Fri May 05 2023 Python_Bot <Python_Bot@openeuler.org> - 3.0.1-1
- Package Spec generated