summaryrefslogtreecommitdiff
path: root/python-pytorch-pretrained-vit.spec
blob: 3bdb06a973d45a75acea054febd0b883ffe0b752 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
%global _empty_manifest_terminate_build 0
Name:		python-pytorch-pretrained-vit
Version:	0.0.7
Release:	1
Summary:	Visual Transformers (ViT) in PyTorch.
License:	Apache
URL:		https://github.com/lukemelas/ViT-PyTorch
Source0:	https://mirrors.aliyun.com/pypi/web/packages/02/8d/b404fe410a984ce2bc95a8ce02d397e3b8b12d6dd3118db6ac9b8edaa370/pytorch-pretrained-vit-0.0.7.tar.gz
BuildArch:	noarch


%description
# ViT PyTorch

### Quickstart

Install with `pip install pytorch_pretrained_vit` and load a pretrained ViT with:
```python
from pytorch_pretrained_vit import ViT
model = ViT('B_16_imagenet1k', pretrained=True)
```

Or find a Google Colab example [here](https://colab.research.google.com/drive/1muZ4QFgVfwALgqmrfOkp7trAvqDemckO?usp=sharing).  

### Overview
This repository contains an op-for-op PyTorch reimplementation of the [Visual Transformer](https://openreview.net/forum?id=YicbFdNTTy) architecture from [Google](https://github.com/google-research/vision_transformer), along with pre-trained models and examples.

The goal of this implementation is to be simple, highly extensible, and easy to integrate into your own projects. 

At the moment, you can easily:
 * Load pretrained ViT models
 * Evaluate on ImageNet or your own data
 * Finetune ViT on your own dataset

_(Upcoming features)_ Coming soon: 
 * Train ViT from scratch on ImageNet (1K)
 * Export to ONNX for efficient inference

### Table of contents
1. [About ViT](#about-vit)
2. [About ViT-PyTorch](#about-vit-pytorch)
3. [Installation](#installation)
4. [Usage](#usage)
    * [Load pretrained models](#loading-pretrained-models)
    * [Example: Classify](#example-classification)
    <!-- * [Example: Extract features](#example-feature-extraction) -->
    <!-- * [Example: Export to ONNX](#example-export) -->
6. [Contributing](#contributing)

### About ViT

Visual Transformers (ViT) are a straightforward application of the [transformer architecture](https://arxiv.org/abs/1706.03762) to image classification. Even in computer vision, it seems, attention is all you need. 

The ViT architecture works as follows: (1) it considers an image as a 1-dimensional sequence of patches, (2) it prepends a classification token to the sequence, (3) it passes these patches through a transformer encoder (like [BERT](https://arxiv.org/abs/1810.04805)), (4) it passes the first token of the output of the transformer through a small MLP to obtain the classification logits. 
ViT is trained on a large-scale dataset (ImageNet-21k) with a huge amount of compute. 

<div style="text-align: center; padding: 10px">
    <img src="https://raw.githubusercontent.com/google-research/vision_transformer/master/figure1.png" width="100%" style="max-width: 300px; margin: auto"/>
</div>


### About ViT-PyTorch

ViT-PyTorch is a PyTorch re-implementation of ViT. It is consistent with the [original Jax implementation](https://github.com/google-research/vision_transformer), so that it's easy to load Jax-pretrained weights.

At the same time, we aim to make our PyTorch implementation as simple, flexible, and extensible as possible.

### Installation

Install with pip:
```bash
pip install pytorch_pretrained_vit
```

Or from source:
```bash
git clone https://github.com/lukemelas/ViT-PyTorch
cd ViT-Pytorch
pip install -e .
```

### Usage

#### Loading pretrained models

Loading a pretrained model is easy:
```python
from pytorch_pretrained_vit import ViT
model = ViT('B_16_imagenet1k', pretrained=True)
```

Details about the models are below:

|    *Name*         |* Pretrained on *|*Finetuned on*|*Available? *|
|:-----------------:|:---------------:|:------------:|:-----------:|
| `B_16`            |  ImageNet-21k   | -            |      ✓      |
| `B_32`            |  ImageNet-21k   | -            |      ✓      |
| `L_16`            |  ImageNet-21k   | -            |      -      |
| `L_32`            |  ImageNet-21k   | -            |      ✓      |
| `B_16_imagenet1k` |  ImageNet-21k   | ImageNet-1k  |      ✓      |
| `B_32_imagenet1k` |  ImageNet-21k   | ImageNet-1k  |      ✓      |
| `L_16_imagenet1k` |  ImageNet-21k   | ImageNet-1k  |      ✓      |
| `L_32_imagenet1k` |  ImageNet-21k   | ImageNet-1k  |      ✓      |

#### Custom ViT

Loading custom configurations is just as easy: 
```python
from pytorch_pretrained_vit import ViT
# The following is equivalent to ViT('B_16')
config = dict(hidden_size=512, num_heads=8, num_layers=6)
model = ViT.from_config(config)
```

#### Example: Classification

Below is a simple, complete example. It may also be found as a Jupyter notebook in `examples/simple` or as a [Colab Notebook]().  
<!-- TODO: new Colab -->

```python
import json
from PIL import Image
import torch
from torchvision import transforms

# Load ViT
from pytorch_pretrained_vit import ViT
model = ViT('B_16_imagenet1k', pretrained=True)
model.eval()

# Load image
# NOTE: Assumes an image `img.jpg` exists in the current directory
img = transforms.Compose([
    transforms.Resize((384, 384)), 
    transforms.ToTensor(),
    transforms.Normalize(0.5, 0.5),
])(Image.open('img.jpg')).unsqueeze(0)
print(img.shape) # torch.Size([1, 3, 384, 384])

# Classify
with torch.no_grad():
    outputs = model(img)
print(outputs.shape)  # (1, 1000)
```

<!-- #### Example: Feature Extraction

You can easily extract features with `model.extract_features`:
```python
from efficientnet_pytorch import EfficientNet
model = EfficientNet.from_pretrained('efficientnet-b0')

# ... image preprocessing as in the classification example ...
print(img.shape) # torch.Size([1, 3, 384, 384])

features = model.extract_features(img)
print(features.shape) # torch.Size([1, 1280, 7, 7])
``` -->

<!-- #### Example: Export to ONNX

Exporting to ONNX for deploying to production is now simple:
```python
import torch
from efficientnet_pytorch import EfficientNet

model = EfficientNet.from_pretrained('efficientnet-b1')
dummy_input = torch.randn(10, 3, 240, 240)

model.set_swish(memory_efficient=False)
torch.onnx.export(model, dummy_input, "test-b1.onnx", verbose=True)
```

[Here](https://colab.research.google.com/drive/1rOAEXeXHaA8uo3aG2YcFDHItlRJMV0VP) is a Colab example. -->


#### ImageNet

See `examples/imagenet` for details about evaluating on ImageNet.

#### Credit

Other great repositories with this model include: 
 - [Ross Wightman's repo](https://github.com/rwightman/pytorch-image-models)
 - [Phil Wang's repo](https://github.com/lucidrains/vit-pytorch)

### Contributing

If you find a bug, create a GitHub issue, or even better, submit a pull request. Similarly, if you have questions, simply post them as GitHub issues.

I look forward to seeing what the community does with these models!

%package -n python3-pytorch-pretrained-vit
Summary:	Visual Transformers (ViT) in PyTorch.
Provides:	python-pytorch-pretrained-vit
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-pytorch-pretrained-vit
# ViT PyTorch

### Quickstart

Install with `pip install pytorch_pretrained_vit` and load a pretrained ViT with:
```python
from pytorch_pretrained_vit import ViT
model = ViT('B_16_imagenet1k', pretrained=True)
```

Or find a Google Colab example [here](https://colab.research.google.com/drive/1muZ4QFgVfwALgqmrfOkp7trAvqDemckO?usp=sharing).  

### Overview
This repository contains an op-for-op PyTorch reimplementation of the [Visual Transformer](https://openreview.net/forum?id=YicbFdNTTy) architecture from [Google](https://github.com/google-research/vision_transformer), along with pre-trained models and examples.

The goal of this implementation is to be simple, highly extensible, and easy to integrate into your own projects. 

At the moment, you can easily:
 * Load pretrained ViT models
 * Evaluate on ImageNet or your own data
 * Finetune ViT on your own dataset

_(Upcoming features)_ Coming soon: 
 * Train ViT from scratch on ImageNet (1K)
 * Export to ONNX for efficient inference

### Table of contents
1. [About ViT](#about-vit)
2. [About ViT-PyTorch](#about-vit-pytorch)
3. [Installation](#installation)
4. [Usage](#usage)
    * [Load pretrained models](#loading-pretrained-models)
    * [Example: Classify](#example-classification)
    <!-- * [Example: Extract features](#example-feature-extraction) -->
    <!-- * [Example: Export to ONNX](#example-export) -->
6. [Contributing](#contributing)

### About ViT

Visual Transformers (ViT) are a straightforward application of the [transformer architecture](https://arxiv.org/abs/1706.03762) to image classification. Even in computer vision, it seems, attention is all you need. 

The ViT architecture works as follows: (1) it considers an image as a 1-dimensional sequence of patches, (2) it prepends a classification token to the sequence, (3) it passes these patches through a transformer encoder (like [BERT](https://arxiv.org/abs/1810.04805)), (4) it passes the first token of the output of the transformer through a small MLP to obtain the classification logits. 
ViT is trained on a large-scale dataset (ImageNet-21k) with a huge amount of compute. 

<div style="text-align: center; padding: 10px">
    <img src="https://raw.githubusercontent.com/google-research/vision_transformer/master/figure1.png" width="100%" style="max-width: 300px; margin: auto"/>
</div>


### About ViT-PyTorch

ViT-PyTorch is a PyTorch re-implementation of ViT. It is consistent with the [original Jax implementation](https://github.com/google-research/vision_transformer), so that it's easy to load Jax-pretrained weights.

At the same time, we aim to make our PyTorch implementation as simple, flexible, and extensible as possible.

### Installation

Install with pip:
```bash
pip install pytorch_pretrained_vit
```

Or from source:
```bash
git clone https://github.com/lukemelas/ViT-PyTorch
cd ViT-Pytorch
pip install -e .
```

### Usage

#### Loading pretrained models

Loading a pretrained model is easy:
```python
from pytorch_pretrained_vit import ViT
model = ViT('B_16_imagenet1k', pretrained=True)
```

Details about the models are below:

|    *Name*         |* Pretrained on *|*Finetuned on*|*Available? *|
|:-----------------:|:---------------:|:------------:|:-----------:|
| `B_16`            |  ImageNet-21k   | -            |      ✓      |
| `B_32`            |  ImageNet-21k   | -            |      ✓      |
| `L_16`            |  ImageNet-21k   | -            |      -      |
| `L_32`            |  ImageNet-21k   | -            |      ✓      |
| `B_16_imagenet1k` |  ImageNet-21k   | ImageNet-1k  |      ✓      |
| `B_32_imagenet1k` |  ImageNet-21k   | ImageNet-1k  |      ✓      |
| `L_16_imagenet1k` |  ImageNet-21k   | ImageNet-1k  |      ✓      |
| `L_32_imagenet1k` |  ImageNet-21k   | ImageNet-1k  |      ✓      |

#### Custom ViT

Loading custom configurations is just as easy: 
```python
from pytorch_pretrained_vit import ViT
# The following is equivalent to ViT('B_16')
config = dict(hidden_size=512, num_heads=8, num_layers=6)
model = ViT.from_config(config)
```

#### Example: Classification

Below is a simple, complete example. It may also be found as a Jupyter notebook in `examples/simple` or as a [Colab Notebook]().  
<!-- TODO: new Colab -->

```python
import json
from PIL import Image
import torch
from torchvision import transforms

# Load ViT
from pytorch_pretrained_vit import ViT
model = ViT('B_16_imagenet1k', pretrained=True)
model.eval()

# Load image
# NOTE: Assumes an image `img.jpg` exists in the current directory
img = transforms.Compose([
    transforms.Resize((384, 384)), 
    transforms.ToTensor(),
    transforms.Normalize(0.5, 0.5),
])(Image.open('img.jpg')).unsqueeze(0)
print(img.shape) # torch.Size([1, 3, 384, 384])

# Classify
with torch.no_grad():
    outputs = model(img)
print(outputs.shape)  # (1, 1000)
```

<!-- #### Example: Feature Extraction

You can easily extract features with `model.extract_features`:
```python
from efficientnet_pytorch import EfficientNet
model = EfficientNet.from_pretrained('efficientnet-b0')

# ... image preprocessing as in the classification example ...
print(img.shape) # torch.Size([1, 3, 384, 384])

features = model.extract_features(img)
print(features.shape) # torch.Size([1, 1280, 7, 7])
``` -->

<!-- #### Example: Export to ONNX

Exporting to ONNX for deploying to production is now simple:
```python
import torch
from efficientnet_pytorch import EfficientNet

model = EfficientNet.from_pretrained('efficientnet-b1')
dummy_input = torch.randn(10, 3, 240, 240)

model.set_swish(memory_efficient=False)
torch.onnx.export(model, dummy_input, "test-b1.onnx", verbose=True)
```

[Here](https://colab.research.google.com/drive/1rOAEXeXHaA8uo3aG2YcFDHItlRJMV0VP) is a Colab example. -->


#### ImageNet

See `examples/imagenet` for details about evaluating on ImageNet.

#### Credit

Other great repositories with this model include: 
 - [Ross Wightman's repo](https://github.com/rwightman/pytorch-image-models)
 - [Phil Wang's repo](https://github.com/lucidrains/vit-pytorch)

### Contributing

If you find a bug, create a GitHub issue, or even better, submit a pull request. Similarly, if you have questions, simply post them as GitHub issues.

I look forward to seeing what the community does with these models!

%package help
Summary:	Development documents and examples for pytorch-pretrained-vit
Provides:	python3-pytorch-pretrained-vit-doc
%description help
# ViT PyTorch

### Quickstart

Install with `pip install pytorch_pretrained_vit` and load a pretrained ViT with:
```python
from pytorch_pretrained_vit import ViT
model = ViT('B_16_imagenet1k', pretrained=True)
```

Or find a Google Colab example [here](https://colab.research.google.com/drive/1muZ4QFgVfwALgqmrfOkp7trAvqDemckO?usp=sharing).  

### Overview
This repository contains an op-for-op PyTorch reimplementation of the [Visual Transformer](https://openreview.net/forum?id=YicbFdNTTy) architecture from [Google](https://github.com/google-research/vision_transformer), along with pre-trained models and examples.

The goal of this implementation is to be simple, highly extensible, and easy to integrate into your own projects. 

At the moment, you can easily:
 * Load pretrained ViT models
 * Evaluate on ImageNet or your own data
 * Finetune ViT on your own dataset

_(Upcoming features)_ Coming soon: 
 * Train ViT from scratch on ImageNet (1K)
 * Export to ONNX for efficient inference

### Table of contents
1. [About ViT](#about-vit)
2. [About ViT-PyTorch](#about-vit-pytorch)
3. [Installation](#installation)
4. [Usage](#usage)
    * [Load pretrained models](#loading-pretrained-models)
    * [Example: Classify](#example-classification)
    <!-- * [Example: Extract features](#example-feature-extraction) -->
    <!-- * [Example: Export to ONNX](#example-export) -->
6. [Contributing](#contributing)

### About ViT

Visual Transformers (ViT) are a straightforward application of the [transformer architecture](https://arxiv.org/abs/1706.03762) to image classification. Even in computer vision, it seems, attention is all you need. 

The ViT architecture works as follows: (1) it considers an image as a 1-dimensional sequence of patches, (2) it prepends a classification token to the sequence, (3) it passes these patches through a transformer encoder (like [BERT](https://arxiv.org/abs/1810.04805)), (4) it passes the first token of the output of the transformer through a small MLP to obtain the classification logits. 
ViT is trained on a large-scale dataset (ImageNet-21k) with a huge amount of compute. 

<div style="text-align: center; padding: 10px">
    <img src="https://raw.githubusercontent.com/google-research/vision_transformer/master/figure1.png" width="100%" style="max-width: 300px; margin: auto"/>
</div>


### About ViT-PyTorch

ViT-PyTorch is a PyTorch re-implementation of ViT. It is consistent with the [original Jax implementation](https://github.com/google-research/vision_transformer), so that it's easy to load Jax-pretrained weights.

At the same time, we aim to make our PyTorch implementation as simple, flexible, and extensible as possible.

### Installation

Install with pip:
```bash
pip install pytorch_pretrained_vit
```

Or from source:
```bash
git clone https://github.com/lukemelas/ViT-PyTorch
cd ViT-Pytorch
pip install -e .
```

### Usage

#### Loading pretrained models

Loading a pretrained model is easy:
```python
from pytorch_pretrained_vit import ViT
model = ViT('B_16_imagenet1k', pretrained=True)
```

Details about the models are below:

|    *Name*         |* Pretrained on *|*Finetuned on*|*Available? *|
|:-----------------:|:---------------:|:------------:|:-----------:|
| `B_16`            |  ImageNet-21k   | -            |      ✓      |
| `B_32`            |  ImageNet-21k   | -            |      ✓      |
| `L_16`            |  ImageNet-21k   | -            |      -      |
| `L_32`            |  ImageNet-21k   | -            |      ✓      |
| `B_16_imagenet1k` |  ImageNet-21k   | ImageNet-1k  |      ✓      |
| `B_32_imagenet1k` |  ImageNet-21k   | ImageNet-1k  |      ✓      |
| `L_16_imagenet1k` |  ImageNet-21k   | ImageNet-1k  |      ✓      |
| `L_32_imagenet1k` |  ImageNet-21k   | ImageNet-1k  |      ✓      |

#### Custom ViT

Loading custom configurations is just as easy: 
```python
from pytorch_pretrained_vit import ViT
# The following is equivalent to ViT('B_16')
config = dict(hidden_size=512, num_heads=8, num_layers=6)
model = ViT.from_config(config)
```

#### Example: Classification

Below is a simple, complete example. It may also be found as a Jupyter notebook in `examples/simple` or as a [Colab Notebook]().  
<!-- TODO: new Colab -->

```python
import json
from PIL import Image
import torch
from torchvision import transforms

# Load ViT
from pytorch_pretrained_vit import ViT
model = ViT('B_16_imagenet1k', pretrained=True)
model.eval()

# Load image
# NOTE: Assumes an image `img.jpg` exists in the current directory
img = transforms.Compose([
    transforms.Resize((384, 384)), 
    transforms.ToTensor(),
    transforms.Normalize(0.5, 0.5),
])(Image.open('img.jpg')).unsqueeze(0)
print(img.shape) # torch.Size([1, 3, 384, 384])

# Classify
with torch.no_grad():
    outputs = model(img)
print(outputs.shape)  # (1, 1000)
```

<!-- #### Example: Feature Extraction

You can easily extract features with `model.extract_features`:
```python
from efficientnet_pytorch import EfficientNet
model = EfficientNet.from_pretrained('efficientnet-b0')

# ... image preprocessing as in the classification example ...
print(img.shape) # torch.Size([1, 3, 384, 384])

features = model.extract_features(img)
print(features.shape) # torch.Size([1, 1280, 7, 7])
``` -->

<!-- #### Example: Export to ONNX

Exporting to ONNX for deploying to production is now simple:
```python
import torch
from efficientnet_pytorch import EfficientNet

model = EfficientNet.from_pretrained('efficientnet-b1')
dummy_input = torch.randn(10, 3, 240, 240)

model.set_swish(memory_efficient=False)
torch.onnx.export(model, dummy_input, "test-b1.onnx", verbose=True)
```

[Here](https://colab.research.google.com/drive/1rOAEXeXHaA8uo3aG2YcFDHItlRJMV0VP) is a Colab example. -->


#### ImageNet

See `examples/imagenet` for details about evaluating on ImageNet.

#### Credit

Other great repositories with this model include: 
 - [Ross Wightman's repo](https://github.com/rwightman/pytorch-image-models)
 - [Phil Wang's repo](https://github.com/lucidrains/vit-pytorch)

### Contributing

If you find a bug, create a GitHub issue, or even better, submit a pull request. Similarly, if you have questions, simply post them as GitHub issues.

I look forward to seeing what the community does with these models!

%prep
%autosetup -n pytorch-pretrained-vit-0.0.7

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "\"/%h/%f.gz\"\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-pytorch-pretrained-vit -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Tue Jun 20 2023 Python_Bot <Python_Bot@openeuler.org> - 0.0.7-1
- Package Spec generated