1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
|
%global _empty_manifest_terminate_build 0
Name: python-pytorch-segmentation-models-trainer
Version: 0.17.0
Release: 1
Summary: Image segmentation models training of popular architectures.
License: GPL
URL: https://github.com/phborba/pytorch_segmentation_models_trainer
Source0: https://mirrors.aliyun.com/pypi/web/packages/23/77/6763d17050316adab53302082893346db749f2b350e85357562331c795ec/pytorch_segmentation_models_trainer-0.17.0.tar.gz
BuildArch: noarch
Requires: python3-torch
Requires: python3-torchvision
Requires: python3-pytorch-lightning
Requires: python3-torchmetrics
Requires: python3-segmentation-models-pytorch
Requires: python3-hydra-core
Requires: python3-kornia
Requires: python3-albumentations
Requires: python3-pandas
Requires: python3-tensorboardX
Requires: python3-pillow
Requires: python3-matplotlib
Requires: python3-scipy
Requires: python3-numpy
Requires: python3-pytorch-toolbelt
Requires: python3-descartes
Requires: python3-fiona
Requires: python3-psycopg2
Requires: python3-shapely
Requires: python3-geopandas
Requires: python3-geoalchemy2
Requires: python3-rasterio
Requires: python3-numba
Requires: python3-sahi
Requires: python3-skan
Requires: python3-torch-scatter
Requires: python3-tqdm
Requires: python3-pygeos
Requires: python3-rtree
Requires: python3-bidict
Requires: python3-Cython
Requires: python3-ninja
Requires: python3-pyyaml
Requires: python3-pycocotools
Requires: python3-multiprocess
Requires: python3-wget
Requires: python3-fastapi
Requires: python3-uvicorn
Requires: python3-similaritymeasures
Requires: python3-colorama
Requires: python3-swifter
Requires: python3-multipart
Requires: python3-pytest
Requires: python3-scikit-image
Requires: python3-parameterized
%description
# pytorch_segmentation_models_trainer
[](https://pytorch.org/get-started/locally/)
[](https://pytorchlightning.ai/)
[](https://hydra.cc/)
[](https://github.com/qubvel/segmentation_models.pytorch)
[](https://github.com/phborba/pytorch_segmentation_models_trainer/actions/workflows/python-app.yml)
[](https://github.com/phborba/pytorch_segmentation_models_trainer/actions/workflows/python-publish.yml)
[](https://github.com/phborba/pytorch_segmentation_models_trainer/actions/workflows/docker-publish.yml)
[](https://results.pre-commit.ci/latest/github/phborba/pytorch_segmentation_models_trainer/main)
[](https://pypi.org/project/pytorch-segmentation-models-trainer/)
[](https://codecov.io/gh/phborba/pytorch_segmentation_models_trainer)
[](https://github.com/phborba/pytorch_segmentation_models_trainer/actions/workflows/codeql-analysis.yml)
[](https://github.com/phborba)
[](https://doi.org/10.5281/zenodo.4573996)
Framework based on Pytorch, Pytorch Lightning, segmentation_models.pytorch and hydra to train semantic segmentation models using yaml config files as follows:
```
model:
_target_: segmentation_models_pytorch.Unet
encoder_name: resnet34
encoder_weights: imagenet
in_channels: 3
classes: 1
loss:
_target_: segmentation_models_pytorch.utils.losses.DiceLoss
optimizer:
_target_: torch.optim.AdamW
lr: 0.001
weight_decay: 1e-4
hyperparameters:
batch_size: 1
epochs: 2
max_lr: 0.1
pl_trainer:
max_epochs: ${hyperparameters.batch_size}
gpus: 0
train_dataset:
_target_: pytorch_segmentation_models_trainer.dataset_loader.dataset.SegmentationDataset
input_csv_path: /path/to/input.csv
data_loader:
shuffle: True
num_workers: 1
pin_memory: True
drop_last: True
prefetch_factor: 1
augmentation_list:
- _target_: albumentations.HueSaturationValue
always_apply: false
hue_shift_limit: 0.2
p: 0.5
- _target_: albumentations.RandomBrightnessContrast
brightness_limit: 0.2
contrast_limit: 0.2
p: 0.5
- _target_: albumentations.RandomCrop
always_apply: true
height: 256
width: 256
p: 1.0
- _target_: albumentations.Flip
always_apply: true
- _target_: albumentations.Normalize
p: 1.0
- _target_: albumentations.pytorch.transforms.ToTensorV2
always_apply: true
val_dataset:
_target_: pytorch_segmentation_models_trainer.dataset_loader.dataset.SegmentationDataset
input_csv_path: /path/to/input.csv
data_loader:
shuffle: True
num_workers: 1
pin_memory: True
drop_last: True
prefetch_factor: 1
augmentation_list:
- _target_: albumentations.Resize
always_apply: true
height: 256
width: 256
p: 1.0
- _target_: albumentations.Normalize
p: 1.0
- _target_: albumentations.pytorch.transforms.ToTensorV2
always_apply: true
```
To train a model with configuration path ```/path/to/config/folder``` and name ```test.yaml```:
```
pytorch-smt --config-dir /path/to/config/folder --config-name test +mode=train
```
The mode can be stored in configuration yaml as well. In this case, do not pass the +mode= argument. If the mode is stored in the yaml and you want to overwrite the value, do not use the + clause, just mode= .
This module suports hydra features such as configuration composition. For further information, please visit https://hydra.cc/docs/intro
# Install
If you are not using docker and if you want to enable gpu acceleration, before installing this package, you should install pytorch_scatter as instructed in https://github.com/rusty1s/pytorch_scatter
After installing pytorch_scatter, just do
```
pip install pytorch_segmentation_models_trainer
```
We have a docker container in which all dependencies are installed and ready for gpu usage. You can pull the image from dockerhub:
```
docker pull phborba/pytorch_segmentation_models_trainer:latest
```
# Citing:
```
@software{philipe_borba_2021_5115127,
author = {Philipe Borba},
title = {{phborba/pytorch\_segmentation\_models\_trainer:
Version 0.8.0}},
month = jul,
year = 2021,
publisher = {Zenodo},
version = {v0.8.0},
doi = {10.5281/zenodo.5115127},
url = {https://doi.org/10.5281/zenodo.5115127}
}
%package -n python3-pytorch-segmentation-models-trainer
Summary: Image segmentation models training of popular architectures.
Provides: python-pytorch-segmentation-models-trainer
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-pytorch-segmentation-models-trainer
# pytorch_segmentation_models_trainer
[](https://pytorch.org/get-started/locally/)
[](https://pytorchlightning.ai/)
[](https://hydra.cc/)
[](https://github.com/qubvel/segmentation_models.pytorch)
[](https://github.com/phborba/pytorch_segmentation_models_trainer/actions/workflows/python-app.yml)
[](https://github.com/phborba/pytorch_segmentation_models_trainer/actions/workflows/python-publish.yml)
[](https://github.com/phborba/pytorch_segmentation_models_trainer/actions/workflows/docker-publish.yml)
[](https://results.pre-commit.ci/latest/github/phborba/pytorch_segmentation_models_trainer/main)
[](https://pypi.org/project/pytorch-segmentation-models-trainer/)
[](https://codecov.io/gh/phborba/pytorch_segmentation_models_trainer)
[](https://github.com/phborba/pytorch_segmentation_models_trainer/actions/workflows/codeql-analysis.yml)
[](https://github.com/phborba)
[](https://doi.org/10.5281/zenodo.4573996)
Framework based on Pytorch, Pytorch Lightning, segmentation_models.pytorch and hydra to train semantic segmentation models using yaml config files as follows:
```
model:
_target_: segmentation_models_pytorch.Unet
encoder_name: resnet34
encoder_weights: imagenet
in_channels: 3
classes: 1
loss:
_target_: segmentation_models_pytorch.utils.losses.DiceLoss
optimizer:
_target_: torch.optim.AdamW
lr: 0.001
weight_decay: 1e-4
hyperparameters:
batch_size: 1
epochs: 2
max_lr: 0.1
pl_trainer:
max_epochs: ${hyperparameters.batch_size}
gpus: 0
train_dataset:
_target_: pytorch_segmentation_models_trainer.dataset_loader.dataset.SegmentationDataset
input_csv_path: /path/to/input.csv
data_loader:
shuffle: True
num_workers: 1
pin_memory: True
drop_last: True
prefetch_factor: 1
augmentation_list:
- _target_: albumentations.HueSaturationValue
always_apply: false
hue_shift_limit: 0.2
p: 0.5
- _target_: albumentations.RandomBrightnessContrast
brightness_limit: 0.2
contrast_limit: 0.2
p: 0.5
- _target_: albumentations.RandomCrop
always_apply: true
height: 256
width: 256
p: 1.0
- _target_: albumentations.Flip
always_apply: true
- _target_: albumentations.Normalize
p: 1.0
- _target_: albumentations.pytorch.transforms.ToTensorV2
always_apply: true
val_dataset:
_target_: pytorch_segmentation_models_trainer.dataset_loader.dataset.SegmentationDataset
input_csv_path: /path/to/input.csv
data_loader:
shuffle: True
num_workers: 1
pin_memory: True
drop_last: True
prefetch_factor: 1
augmentation_list:
- _target_: albumentations.Resize
always_apply: true
height: 256
width: 256
p: 1.0
- _target_: albumentations.Normalize
p: 1.0
- _target_: albumentations.pytorch.transforms.ToTensorV2
always_apply: true
```
To train a model with configuration path ```/path/to/config/folder``` and name ```test.yaml```:
```
pytorch-smt --config-dir /path/to/config/folder --config-name test +mode=train
```
The mode can be stored in configuration yaml as well. In this case, do not pass the +mode= argument. If the mode is stored in the yaml and you want to overwrite the value, do not use the + clause, just mode= .
This module suports hydra features such as configuration composition. For further information, please visit https://hydra.cc/docs/intro
# Install
If you are not using docker and if you want to enable gpu acceleration, before installing this package, you should install pytorch_scatter as instructed in https://github.com/rusty1s/pytorch_scatter
After installing pytorch_scatter, just do
```
pip install pytorch_segmentation_models_trainer
```
We have a docker container in which all dependencies are installed and ready for gpu usage. You can pull the image from dockerhub:
```
docker pull phborba/pytorch_segmentation_models_trainer:latest
```
# Citing:
```
@software{philipe_borba_2021_5115127,
author = {Philipe Borba},
title = {{phborba/pytorch\_segmentation\_models\_trainer:
Version 0.8.0}},
month = jul,
year = 2021,
publisher = {Zenodo},
version = {v0.8.0},
doi = {10.5281/zenodo.5115127},
url = {https://doi.org/10.5281/zenodo.5115127}
}
%package help
Summary: Development documents and examples for pytorch-segmentation-models-trainer
Provides: python3-pytorch-segmentation-models-trainer-doc
%description help
# pytorch_segmentation_models_trainer
[](https://pytorch.org/get-started/locally/)
[](https://pytorchlightning.ai/)
[](https://hydra.cc/)
[](https://github.com/qubvel/segmentation_models.pytorch)
[](https://github.com/phborba/pytorch_segmentation_models_trainer/actions/workflows/python-app.yml)
[](https://github.com/phborba/pytorch_segmentation_models_trainer/actions/workflows/python-publish.yml)
[](https://github.com/phborba/pytorch_segmentation_models_trainer/actions/workflows/docker-publish.yml)
[](https://results.pre-commit.ci/latest/github/phborba/pytorch_segmentation_models_trainer/main)
[](https://pypi.org/project/pytorch-segmentation-models-trainer/)
[](https://codecov.io/gh/phborba/pytorch_segmentation_models_trainer)
[](https://github.com/phborba/pytorch_segmentation_models_trainer/actions/workflows/codeql-analysis.yml)
[](https://github.com/phborba)
[](https://doi.org/10.5281/zenodo.4573996)
Framework based on Pytorch, Pytorch Lightning, segmentation_models.pytorch and hydra to train semantic segmentation models using yaml config files as follows:
```
model:
_target_: segmentation_models_pytorch.Unet
encoder_name: resnet34
encoder_weights: imagenet
in_channels: 3
classes: 1
loss:
_target_: segmentation_models_pytorch.utils.losses.DiceLoss
optimizer:
_target_: torch.optim.AdamW
lr: 0.001
weight_decay: 1e-4
hyperparameters:
batch_size: 1
epochs: 2
max_lr: 0.1
pl_trainer:
max_epochs: ${hyperparameters.batch_size}
gpus: 0
train_dataset:
_target_: pytorch_segmentation_models_trainer.dataset_loader.dataset.SegmentationDataset
input_csv_path: /path/to/input.csv
data_loader:
shuffle: True
num_workers: 1
pin_memory: True
drop_last: True
prefetch_factor: 1
augmentation_list:
- _target_: albumentations.HueSaturationValue
always_apply: false
hue_shift_limit: 0.2
p: 0.5
- _target_: albumentations.RandomBrightnessContrast
brightness_limit: 0.2
contrast_limit: 0.2
p: 0.5
- _target_: albumentations.RandomCrop
always_apply: true
height: 256
width: 256
p: 1.0
- _target_: albumentations.Flip
always_apply: true
- _target_: albumentations.Normalize
p: 1.0
- _target_: albumentations.pytorch.transforms.ToTensorV2
always_apply: true
val_dataset:
_target_: pytorch_segmentation_models_trainer.dataset_loader.dataset.SegmentationDataset
input_csv_path: /path/to/input.csv
data_loader:
shuffle: True
num_workers: 1
pin_memory: True
drop_last: True
prefetch_factor: 1
augmentation_list:
- _target_: albumentations.Resize
always_apply: true
height: 256
width: 256
p: 1.0
- _target_: albumentations.Normalize
p: 1.0
- _target_: albumentations.pytorch.transforms.ToTensorV2
always_apply: true
```
To train a model with configuration path ```/path/to/config/folder``` and name ```test.yaml```:
```
pytorch-smt --config-dir /path/to/config/folder --config-name test +mode=train
```
The mode can be stored in configuration yaml as well. In this case, do not pass the +mode= argument. If the mode is stored in the yaml and you want to overwrite the value, do not use the + clause, just mode= .
This module suports hydra features such as configuration composition. For further information, please visit https://hydra.cc/docs/intro
# Install
If you are not using docker and if you want to enable gpu acceleration, before installing this package, you should install pytorch_scatter as instructed in https://github.com/rusty1s/pytorch_scatter
After installing pytorch_scatter, just do
```
pip install pytorch_segmentation_models_trainer
```
We have a docker container in which all dependencies are installed and ready for gpu usage. You can pull the image from dockerhub:
```
docker pull phborba/pytorch_segmentation_models_trainer:latest
```
# Citing:
```
@software{philipe_borba_2021_5115127,
author = {Philipe Borba},
title = {{phborba/pytorch\_segmentation\_models\_trainer:
Version 0.8.0}},
month = jul,
year = 2021,
publisher = {Zenodo},
version = {v0.8.0},
doi = {10.5281/zenodo.5115127},
url = {https://doi.org/10.5281/zenodo.5115127}
}
%prep
%autosetup -n pytorch_segmentation_models_trainer-0.17.0
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "\"/%h/%f.gz\"\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-pytorch-segmentation-models-trainer -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Thu Jun 08 2023 Python_Bot <Python_Bot@openeuler.org> - 0.17.0-1
- Package Spec generated
|