1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
|
%global _empty_manifest_terminate_build 0
Name: python-qiskit-aer
Version: 0.12.0
Release: 1
Summary: Qiskit Aer - High performance simulators for Qiskit
License: Apache 2.0
URL: https://github.com/Qiskit/qiskit-aer
Source0: https://mirrors.nju.edu.cn/pypi/web/packages/03/96/ea1988dac83a1cd5a28576a79fdc5f12fec2025b4a5a8ad500592f142dde/qiskit-aer-0.12.0.tar.gz
Requires: python3-qiskit-terra
Requires: python3-numpy
Requires: python3-scipy
Requires: python3-dask
Requires: python3-distributed
%description
# Qiskit Aer
[](https://opensource.org/licenses/Apache-2.0)[](https://travis-ci.com/Qiskit/qiskit-aer)[](https://github.com/Qiskit/qiskit-aer/releases)[](https://pypi.org/project/qiskit-aer/)
**Qiskit** is an open-source framework for working with noisy quantum computers at the level of pulses, circuits, and algorithms.
Qiskit is made up of elements that each work together to enable quantum computing. This element is **Aer**, which provides high-performance quantum computing simulators with realistic noise models.
## Installation
We encourage installing Qiskit via the pip tool (a python package manager). The following command installs the core Qiskit components, including Aer.
```bash
pip install qiskit qiskit-aer
```
Pip will handle all dependencies automatically for us and you will always install the latest (and well-tested) version.
To install from source, follow the instructions in the [contribution guidelines](CONTRIBUTING.md).
## Installing GPU support
In order to install and run the GPU supported simulators on Linux, you need CUDA® 10.1 or newer previously installed.
CUDA® itself would require a set of specific GPU drivers. Please follow CUDA® installation procedure in the NVIDIA® [web](https://www.nvidia.com/drivers).
If you want to install our GPU supported simulators, you have to install this other package:
```bash
pip install qiskit-aer-gpu
```
This will overwrite your current `qiskit-aer` package installation giving you
the same functionality found in the canonical `qiskit-aer` package, plus the
ability to run the GPU supported simulators: statevector, density matrix, and unitary.
**Note**: This package is only available on x86_64 Linux. For other platforms
that have CUDA support you will have to build from source. You can refer to
the [contributing guide](CONTRIBUTING.md#building-with-gpu-support)
for instructions on doing this.
## Simulating your first quantum program with Qiskit Aer
Now that you have Qiskit Aer installed, you can start simulating quantum circuits with noise. Here is a basic example:
```
$ python
```
```python
import qiskit
from qiskit import IBMQ
from qiskit_aer import AerSimulator
# Generate 3-qubit GHZ state
circ = qiskit.QuantumCircuit(3)
circ.h(0)
circ.cx(0, 1)
circ.cx(1, 2)
circ.measure_all()
# Construct an ideal simulator
aersim = AerSimulator()
# Perform an ideal simulation
result_ideal = qiskit.execute(circ, aersim).result()
counts_ideal = result_ideal.get_counts(0)
print('Counts(ideal):', counts_ideal)
# Counts(ideal): {'000': 493, '111': 531}
# Construct a noisy simulator backend from an IBMQ backend
# This simulator backend will be automatically configured
# using the device configuration and noise model
provider = IBMQ.load_account()
backend = provider.get_backend('ibmq_athens')
aersim_backend = AerSimulator.from_backend(backend)
# Perform noisy simulation
result_noise = qiskit.execute(circ, aersim_backend).result()
counts_noise = result_noise.get_counts(0)
print('Counts(noise):', counts_noise)
# Counts(noise): {'000': 492, '001': 6, '010': 8, '011': 14, '100': 3, '101': 14, '110': 18, '111': 469}
```
## Contribution Guidelines
If you'd like to contribute to Qiskit, please take a look at our
[contribution guidelines](CONTRIBUTING.md). This project adheres to Qiskit's [code of conduct](CODE_OF_CONDUCT.md). By participating, you are expect to uphold to this code.
We use [GitHub issues](https://github.com/Qiskit/qiskit-aer/issues) for tracking requests and bugs. Please use our [slack](https://qiskit.slack.com) for discussion and simple questions. To join our Slack community use the [link](https://qiskit.slack.com/join/shared_invite/zt-fybmq791-hYRopcSH6YetxycNPXgv~A#/). For questions that are more suited for a forum we use the Qiskit tag in the [Stack Exchange](https://quantumcomputing.stackexchange.com/questions/tagged/qiskit).
## Next Steps
Now you're set up and ready to check out some of the other examples from our
[Qiskit IQX Tutorials](https://github.com/Qiskit/qiskit-tutorials/tree/master/tutorials/simulators) or [Qiskit Community Tutorials](https://github.com/Qiskit/qiskit-community-tutorials/tree/master/aer) repositories.
## Authors and Citation
Qiskit Aer is the work of [many people](https://github.com/Qiskit/qiskit-aer/graphs/contributors) who contribute
to the project at different levels. If you use Qiskit, please cite as per the included [BibTeX file](https://github.com/Qiskit/qiskit/blob/master/Qiskit.bib).
## License
[Apache License 2.0](LICENSE.txt)
%package -n python3-qiskit-aer
Summary: Qiskit Aer - High performance simulators for Qiskit
Provides: python-qiskit-aer
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
BuildRequires: python3-cffi
BuildRequires: gcc
BuildRequires: gdb
%description -n python3-qiskit-aer
# Qiskit Aer
[](https://opensource.org/licenses/Apache-2.0)[](https://travis-ci.com/Qiskit/qiskit-aer)[](https://github.com/Qiskit/qiskit-aer/releases)[](https://pypi.org/project/qiskit-aer/)
**Qiskit** is an open-source framework for working with noisy quantum computers at the level of pulses, circuits, and algorithms.
Qiskit is made up of elements that each work together to enable quantum computing. This element is **Aer**, which provides high-performance quantum computing simulators with realistic noise models.
## Installation
We encourage installing Qiskit via the pip tool (a python package manager). The following command installs the core Qiskit components, including Aer.
```bash
pip install qiskit qiskit-aer
```
Pip will handle all dependencies automatically for us and you will always install the latest (and well-tested) version.
To install from source, follow the instructions in the [contribution guidelines](CONTRIBUTING.md).
## Installing GPU support
In order to install and run the GPU supported simulators on Linux, you need CUDA® 10.1 or newer previously installed.
CUDA® itself would require a set of specific GPU drivers. Please follow CUDA® installation procedure in the NVIDIA® [web](https://www.nvidia.com/drivers).
If you want to install our GPU supported simulators, you have to install this other package:
```bash
pip install qiskit-aer-gpu
```
This will overwrite your current `qiskit-aer` package installation giving you
the same functionality found in the canonical `qiskit-aer` package, plus the
ability to run the GPU supported simulators: statevector, density matrix, and unitary.
**Note**: This package is only available on x86_64 Linux. For other platforms
that have CUDA support you will have to build from source. You can refer to
the [contributing guide](CONTRIBUTING.md#building-with-gpu-support)
for instructions on doing this.
## Simulating your first quantum program with Qiskit Aer
Now that you have Qiskit Aer installed, you can start simulating quantum circuits with noise. Here is a basic example:
```
$ python
```
```python
import qiskit
from qiskit import IBMQ
from qiskit_aer import AerSimulator
# Generate 3-qubit GHZ state
circ = qiskit.QuantumCircuit(3)
circ.h(0)
circ.cx(0, 1)
circ.cx(1, 2)
circ.measure_all()
# Construct an ideal simulator
aersim = AerSimulator()
# Perform an ideal simulation
result_ideal = qiskit.execute(circ, aersim).result()
counts_ideal = result_ideal.get_counts(0)
print('Counts(ideal):', counts_ideal)
# Counts(ideal): {'000': 493, '111': 531}
# Construct a noisy simulator backend from an IBMQ backend
# This simulator backend will be automatically configured
# using the device configuration and noise model
provider = IBMQ.load_account()
backend = provider.get_backend('ibmq_athens')
aersim_backend = AerSimulator.from_backend(backend)
# Perform noisy simulation
result_noise = qiskit.execute(circ, aersim_backend).result()
counts_noise = result_noise.get_counts(0)
print('Counts(noise):', counts_noise)
# Counts(noise): {'000': 492, '001': 6, '010': 8, '011': 14, '100': 3, '101': 14, '110': 18, '111': 469}
```
## Contribution Guidelines
If you'd like to contribute to Qiskit, please take a look at our
[contribution guidelines](CONTRIBUTING.md). This project adheres to Qiskit's [code of conduct](CODE_OF_CONDUCT.md). By participating, you are expect to uphold to this code.
We use [GitHub issues](https://github.com/Qiskit/qiskit-aer/issues) for tracking requests and bugs. Please use our [slack](https://qiskit.slack.com) for discussion and simple questions. To join our Slack community use the [link](https://qiskit.slack.com/join/shared_invite/zt-fybmq791-hYRopcSH6YetxycNPXgv~A#/). For questions that are more suited for a forum we use the Qiskit tag in the [Stack Exchange](https://quantumcomputing.stackexchange.com/questions/tagged/qiskit).
## Next Steps
Now you're set up and ready to check out some of the other examples from our
[Qiskit IQX Tutorials](https://github.com/Qiskit/qiskit-tutorials/tree/master/tutorials/simulators) or [Qiskit Community Tutorials](https://github.com/Qiskit/qiskit-community-tutorials/tree/master/aer) repositories.
## Authors and Citation
Qiskit Aer is the work of [many people](https://github.com/Qiskit/qiskit-aer/graphs/contributors) who contribute
to the project at different levels. If you use Qiskit, please cite as per the included [BibTeX file](https://github.com/Qiskit/qiskit/blob/master/Qiskit.bib).
## License
[Apache License 2.0](LICENSE.txt)
%package help
Summary: Development documents and examples for qiskit-aer
Provides: python3-qiskit-aer-doc
%description help
# Qiskit Aer
[](https://opensource.org/licenses/Apache-2.0)[](https://travis-ci.com/Qiskit/qiskit-aer)[](https://github.com/Qiskit/qiskit-aer/releases)[](https://pypi.org/project/qiskit-aer/)
**Qiskit** is an open-source framework for working with noisy quantum computers at the level of pulses, circuits, and algorithms.
Qiskit is made up of elements that each work together to enable quantum computing. This element is **Aer**, which provides high-performance quantum computing simulators with realistic noise models.
## Installation
We encourage installing Qiskit via the pip tool (a python package manager). The following command installs the core Qiskit components, including Aer.
```bash
pip install qiskit qiskit-aer
```
Pip will handle all dependencies automatically for us and you will always install the latest (and well-tested) version.
To install from source, follow the instructions in the [contribution guidelines](CONTRIBUTING.md).
## Installing GPU support
In order to install and run the GPU supported simulators on Linux, you need CUDA® 10.1 or newer previously installed.
CUDA® itself would require a set of specific GPU drivers. Please follow CUDA® installation procedure in the NVIDIA® [web](https://www.nvidia.com/drivers).
If you want to install our GPU supported simulators, you have to install this other package:
```bash
pip install qiskit-aer-gpu
```
This will overwrite your current `qiskit-aer` package installation giving you
the same functionality found in the canonical `qiskit-aer` package, plus the
ability to run the GPU supported simulators: statevector, density matrix, and unitary.
**Note**: This package is only available on x86_64 Linux. For other platforms
that have CUDA support you will have to build from source. You can refer to
the [contributing guide](CONTRIBUTING.md#building-with-gpu-support)
for instructions on doing this.
## Simulating your first quantum program with Qiskit Aer
Now that you have Qiskit Aer installed, you can start simulating quantum circuits with noise. Here is a basic example:
```
$ python
```
```python
import qiskit
from qiskit import IBMQ
from qiskit_aer import AerSimulator
# Generate 3-qubit GHZ state
circ = qiskit.QuantumCircuit(3)
circ.h(0)
circ.cx(0, 1)
circ.cx(1, 2)
circ.measure_all()
# Construct an ideal simulator
aersim = AerSimulator()
# Perform an ideal simulation
result_ideal = qiskit.execute(circ, aersim).result()
counts_ideal = result_ideal.get_counts(0)
print('Counts(ideal):', counts_ideal)
# Counts(ideal): {'000': 493, '111': 531}
# Construct a noisy simulator backend from an IBMQ backend
# This simulator backend will be automatically configured
# using the device configuration and noise model
provider = IBMQ.load_account()
backend = provider.get_backend('ibmq_athens')
aersim_backend = AerSimulator.from_backend(backend)
# Perform noisy simulation
result_noise = qiskit.execute(circ, aersim_backend).result()
counts_noise = result_noise.get_counts(0)
print('Counts(noise):', counts_noise)
# Counts(noise): {'000': 492, '001': 6, '010': 8, '011': 14, '100': 3, '101': 14, '110': 18, '111': 469}
```
## Contribution Guidelines
If you'd like to contribute to Qiskit, please take a look at our
[contribution guidelines](CONTRIBUTING.md). This project adheres to Qiskit's [code of conduct](CODE_OF_CONDUCT.md). By participating, you are expect to uphold to this code.
We use [GitHub issues](https://github.com/Qiskit/qiskit-aer/issues) for tracking requests and bugs. Please use our [slack](https://qiskit.slack.com) for discussion and simple questions. To join our Slack community use the [link](https://qiskit.slack.com/join/shared_invite/zt-fybmq791-hYRopcSH6YetxycNPXgv~A#/). For questions that are more suited for a forum we use the Qiskit tag in the [Stack Exchange](https://quantumcomputing.stackexchange.com/questions/tagged/qiskit).
## Next Steps
Now you're set up and ready to check out some of the other examples from our
[Qiskit IQX Tutorials](https://github.com/Qiskit/qiskit-tutorials/tree/master/tutorials/simulators) or [Qiskit Community Tutorials](https://github.com/Qiskit/qiskit-community-tutorials/tree/master/aer) repositories.
## Authors and Citation
Qiskit Aer is the work of [many people](https://github.com/Qiskit/qiskit-aer/graphs/contributors) who contribute
to the project at different levels. If you use Qiskit, please cite as per the included [BibTeX file](https://github.com/Qiskit/qiskit/blob/master/Qiskit.bib).
## License
[Apache License 2.0](LICENSE.txt)
%prep
%autosetup -n qiskit-aer-0.12.0
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-qiskit-aer -f filelist.lst
%dir %{python3_sitearch}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Sun Apr 23 2023 Python_Bot <Python_Bot@openeuler.org> - 0.12.0-1
- Package Spec generated
|