1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
|
%global _empty_manifest_terminate_build 0
Name: python-qiskit-finance
Version: 0.3.4
Release: 1
Summary: Qiskit Finance: A library of quantum computing finance experiments
License: Apache-2.0
URL: https://github.com/Qiskit/qiskit-finance
Source0: https://mirrors.aliyun.com/pypi/web/packages/74/79/2884c8415315099e254f0d83d558af862724a4ab5cb2d72a7979030943c2/qiskit-finance-0.3.4.tar.gz
BuildArch: noarch
Requires: python3-qiskit-terra
Requires: python3-qiskit-optimization
Requires: python3-scipy
Requires: python3-numpy
Requires: python3-psutil
Requires: python3-fastdtw
Requires: python3-setuptools
Requires: python3-pandas
Requires: python3-nasdaq-data-link
Requires: python3-yfinance
Requires: python3-certifi
Requires: python3-urllib3
%description
### Creating Your First Finance Programming Experiment in Qiskit
Now that Qiskit Finance is installed, it's time to begin working with the finance module.
Let's try an experiment using Amplitude Estimation algorithm to
evaluate a fixed income asset with uncertain interest rates.
```python
import numpy as np
from qiskit import BasicAer
from qiskit.algorithms import AmplitudeEstimation
from qiskit_finance.circuit.library import NormalDistribution
from qiskit_finance.applications import FixedIncomePricing
# Create a suitable multivariate distribution
num_qubits = [2, 2]
bounds = [(0, 0.12), (0, 0.24)]
mvnd = NormalDistribution(
num_qubits, mu=[0.12, 0.24], sigma=0.01 * np.eye(2), bounds=bounds
)
# Create fixed income component
fixed_income = FixedIncomePricing(
num_qubits,
np.eye(2),
np.zeros(2),
cash_flow=[1.0, 2.0],
rescaling_factor=0.125,
bounds=bounds,
uncertainty_model=mvnd,
)
# the FixedIncomeExpectedValue provides us with the necessary rescalings
# create the A operator for amplitude estimation
problem = fixed_income.to_estimation_problem()
# Set number of evaluation qubits (samples)
num_eval_qubits = 5
# Construct and run amplitude estimation
q_i = BasicAer.get_backend("statevector_simulator")
algo = AmplitudeEstimation(num_eval_qubits=num_eval_qubits, quantum_instance=q_i)
result = algo.estimate(problem)
print(f"Estimated value:\t{fixed_income.interpret(result):.4f}")
print(f"Probability: \t{result.max_probability:.4f}")
```
When running the above the estimated value result should be 2.46 and probability 0.8487.
### Further examples
Learning path notebooks may be found in the
[finance tutorials](https://qiskit.org/documentation/finance/tutorials/index.html) section
%package -n python3-qiskit-finance
Summary: Qiskit Finance: A library of quantum computing finance experiments
Provides: python-qiskit-finance
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-qiskit-finance
### Creating Your First Finance Programming Experiment in Qiskit
Now that Qiskit Finance is installed, it's time to begin working with the finance module.
Let's try an experiment using Amplitude Estimation algorithm to
evaluate a fixed income asset with uncertain interest rates.
```python
import numpy as np
from qiskit import BasicAer
from qiskit.algorithms import AmplitudeEstimation
from qiskit_finance.circuit.library import NormalDistribution
from qiskit_finance.applications import FixedIncomePricing
# Create a suitable multivariate distribution
num_qubits = [2, 2]
bounds = [(0, 0.12), (0, 0.24)]
mvnd = NormalDistribution(
num_qubits, mu=[0.12, 0.24], sigma=0.01 * np.eye(2), bounds=bounds
)
# Create fixed income component
fixed_income = FixedIncomePricing(
num_qubits,
np.eye(2),
np.zeros(2),
cash_flow=[1.0, 2.0],
rescaling_factor=0.125,
bounds=bounds,
uncertainty_model=mvnd,
)
# the FixedIncomeExpectedValue provides us with the necessary rescalings
# create the A operator for amplitude estimation
problem = fixed_income.to_estimation_problem()
# Set number of evaluation qubits (samples)
num_eval_qubits = 5
# Construct and run amplitude estimation
q_i = BasicAer.get_backend("statevector_simulator")
algo = AmplitudeEstimation(num_eval_qubits=num_eval_qubits, quantum_instance=q_i)
result = algo.estimate(problem)
print(f"Estimated value:\t{fixed_income.interpret(result):.4f}")
print(f"Probability: \t{result.max_probability:.4f}")
```
When running the above the estimated value result should be 2.46 and probability 0.8487.
### Further examples
Learning path notebooks may be found in the
[finance tutorials](https://qiskit.org/documentation/finance/tutorials/index.html) section
%package help
Summary: Development documents and examples for qiskit-finance
Provides: python3-qiskit-finance-doc
%description help
### Creating Your First Finance Programming Experiment in Qiskit
Now that Qiskit Finance is installed, it's time to begin working with the finance module.
Let's try an experiment using Amplitude Estimation algorithm to
evaluate a fixed income asset with uncertain interest rates.
```python
import numpy as np
from qiskit import BasicAer
from qiskit.algorithms import AmplitudeEstimation
from qiskit_finance.circuit.library import NormalDistribution
from qiskit_finance.applications import FixedIncomePricing
# Create a suitable multivariate distribution
num_qubits = [2, 2]
bounds = [(0, 0.12), (0, 0.24)]
mvnd = NormalDistribution(
num_qubits, mu=[0.12, 0.24], sigma=0.01 * np.eye(2), bounds=bounds
)
# Create fixed income component
fixed_income = FixedIncomePricing(
num_qubits,
np.eye(2),
np.zeros(2),
cash_flow=[1.0, 2.0],
rescaling_factor=0.125,
bounds=bounds,
uncertainty_model=mvnd,
)
# the FixedIncomeExpectedValue provides us with the necessary rescalings
# create the A operator for amplitude estimation
problem = fixed_income.to_estimation_problem()
# Set number of evaluation qubits (samples)
num_eval_qubits = 5
# Construct and run amplitude estimation
q_i = BasicAer.get_backend("statevector_simulator")
algo = AmplitudeEstimation(num_eval_qubits=num_eval_qubits, quantum_instance=q_i)
result = algo.estimate(problem)
print(f"Estimated value:\t{fixed_income.interpret(result):.4f}")
print(f"Probability: \t{result.max_probability:.4f}")
```
When running the above the estimated value result should be 2.46 and probability 0.8487.
### Further examples
Learning path notebooks may be found in the
[finance tutorials](https://qiskit.org/documentation/finance/tutorials/index.html) section
%prep
%autosetup -n qiskit-finance-0.3.4
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "\"/%h/%f.gz\"\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-qiskit-finance -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Thu Jun 08 2023 Python_Bot <Python_Bot@openeuler.org> - 0.3.4-1
- Package Spec generated
|