summaryrefslogtreecommitdiff
path: root/python-qiskit-ignis.spec
blob: db06c79ad85169960a9707175fd244c5c61592cc (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
%global _empty_manifest_terminate_build 0
Name:		python-qiskit-ignis
Version:	0.7.1
Release:	1
Summary:	Qiskit tools for quantum information science
License:	Apache 2.0
URL:		https://github.com/Qiskit/qiskit-ignis
Source0:	https://mirrors.nju.edu.cn/pypi/web/packages/93/d7/a077a5d828037667f4449623ae6c982cac498ebc47e5975ed74c17c15772/qiskit-ignis-0.7.1.tar.gz
BuildArch:	noarch

Requires:	python3-numpy
Requires:	python3-qiskit-terra
Requires:	python3-retworkx
Requires:	python3-scipy
Requires:	python3-setuptools
Requires:	python3-cvxpy
Requires:	python3-scikit-learn
Requires:	python3-numba
Requires:	python3-matplotlib

%description
# Qiskit Ignis (_DEPRECATED_)

[![License](https://img.shields.io/github/license/Qiskit/qiskit-ignis.svg?style=popout-square)](https://opensource.org/licenses/Apache-2.0)[![Build Status](https://img.shields.io/travis/com/Qiskit/qiskit-ignis/master.svg?style=popout-square)](https://travis-ci.com/Qiskit/qiskit-ignis)[![](https://img.shields.io/github/release/Qiskit/qiskit-ignis.svg?style=popout-square)](https://github.com/Qiskit/qiskit-ignis/releases)[![](https://img.shields.io/pypi/dm/qiskit-ignis.svg?style=popout-square)](https://pypi.org/project/qiskit-ignis/)

**_NOTE_** _As of the version 0.7.0 Qiskit Ignis is deprecated and has been
superseded by the
[Qiskit Experiments](https://github.com/Qiskit/qiskit-experiments) project.
Active development on the project has stopped and only compatibility fixes
and other critical bugfixes will be accepted until the project is officially
retired and archived._

**Qiskit** is an open-source framework for working with noisy quantum computers at the level of pulses, circuits, and algorithms.

Qiskit is made up of elements that each work together to enable quantum computing. This element is **Ignis**, which provides tools for quantum hardware verification, noise characterization, and error correction.

## Migration Guide

As of version 0.7.0, Qiskit Ignis has been deprecated and some of its functionality 
was migrated into the `qiskit-experiments` package and into `qiskit-terra`.

* Ignis characterization module

  * This module was partly migrated to [`qiskit-experiments`](https://github.com/Qiskit/qiskit-experiments) and split into two different modules:
  `qiskit_experiments.library.calibration`
  `qiskit_experiments.library.characterization`
  * `AmpCal` is now replaced by `FineAmplitude`.
  * `ZZFitter` was not migrated yet.

* Ignis discriminator module

  * This module is in the process of migration to [`qiskit-experiments`](https://github.com/Qiskit/qiskit-experiments)

* Ignis mitigation module

  * The readout mitigator will be soon added to [`qiskit-terra`](https://github.com/Qiskit/qiskit-terra).
  * Experiments for generating the readout mitigators will be added to [`qiskit-experiments`](https://github.com/Qiskit/qiskit-experiments)
  * For use of mitigators with `qiskit.algorithms` and the [`QuantumInstance` class](https://qiskit.org/documentation/stubs/qiskit.utils.QuantumInstance.html?highlight=quantuminstance#qiskit.utils.QuantumInstance)
    this has been integrated into `qiskit-terra` directly with the `QuantumInstance`.

* Ignis verification module

  * Randomized benchmarking, Quantum Volume and State and Process Tomography were migrated to [`qiskit-experiments`](https://github.com/Qiskit/qiskit-experiments).
  * Migration of Gate-set tomography to [`qiskit-experiments`](https://github.com/Qiskit/qiskit-experiments) is in progress.
  * `topological_codes` will continue development under [NCCR-SPIN](https://github.com/NCCR-SPIN/topological_codes/blob/master/README.md), while the functionality is reintegrated into Qiskit. Some additional functionality can also be found in the offshoot project [qtcodes](https://github.com/yaleqc/qtcodes).
  * Currently the Accredition and Entanglement modules have not been migrated.  
The following table gives a more detailed breakdown that relates the function, as it existed in Ignis, 
to where it now lives after this move.

| Old | New | Library |
| :---: | :---: | :---: |
| qiskit.ignis.characterization.calibrations | qiskit_experiments.library.calibration | qiskit-experiments |
| qiskit.ignis.characterization.coherence | qiskit_experiments.library.characterization | qiskit-experiments |
| qiskit.ignis.mitigation | qiskit_terra.mitigation | qiskit-terra |
| qiskit.ignis.verification.quantum_volume | qiskit_experiments.library.quantum_volume | qiskit-experiments |
| qiskit.ignis.verification.randomized_benchmarking | qiskit_experiments.library.randomized_benchmarking | qiskit-experiments |
| qiskit.ignis.verification.tomography | qiskit_experiments.library.tomography | qiskit-experiments |

## Installation

We encourage installing Qiskit via the pip tool (a python package manager). The following command installs the core Qiskit components, including Ignis.

```bash
pip install qiskit
```

Pip will handle all dependencies automatically for us and you will always install the latest (and well-tested) version.

To install from source, follow the instructions in the [contribution guidelines](./CONTRIBUTING.md).

### Extra Requirements

Some functionality has extra optional requirements. If you're going to use any
visualization functions for fitters you'll need to install matplotlib. You
can do this with `pip install matplotlib` or when you install ignis with
`pip install qiskit-ignis[visualization]`. If you're going to use a cvx fitter
for running tomogography you'll need to install cvxpy. You can do this with
`pip install cvxpy` or when you install ignis with
`pip install qiskit-ignis[cvx]`. When performing expectation value measurement
error mitigation using the CTMP method performance can be improved using
just-in-time compiling if Numbda is installed. You can do this with
`pip install numba` or when you install ignis with
`pip install qiskit-ignis[jit]`. For using the discriminator classes in
`qiskit.ignis.measurement` scikit-learn needs to be installed. You can do this with
`pip install scikit-learn` or when you install ignis with
`pip install qiskit-ignis[iq]`. If you want to install all extra requirements
when you install ignis you can run `pip install qiskit-ignis[visualization,cvx,jit,iq]`.

## Creating your first quantum experiment with Qiskit Ignis
Now that you have Qiskit Ignis installed, you can start creating experiments, to reveal information about the device quality. Here is a basic example:

```
$ python
```

```python
# Import Qiskit classes
import qiskit
from qiskit import QuantumRegister, QuantumCircuit, ClassicalRegister
from qiskit.providers.aer import noise # import AER noise model

# Measurement error mitigation functions
from qiskit.ignis.mitigation.measurement import (complete_meas_cal,
                                                 CompleteMeasFitter, 
                                                 MeasurementFilter)

# Generate a noise model for the qubits
noise_model = noise.NoiseModel()
for qi in range(5):
    read_err = noise.errors.readout_error.ReadoutError([[0.75, 0.25],[0.1, 0.9]])
    noise_model.add_readout_error(read_err, [qi])

# Generate the measurement calibration circuits
# for running measurement error mitigation
qr = QuantumRegister(5)
meas_cals, state_labels = complete_meas_cal(qubit_list=[2,3,4], qr=qr)

# Execute the calibration circuits
backend = qiskit.Aer.get_backend('qasm_simulator')
job = qiskit.execute(meas_cals, backend=backend, shots=1000, noise_model=noise_model)
cal_results = job.result()

# Make a calibration matrix
meas_fitter = CompleteMeasFitter(cal_results, state_labels)

# Make a 3Q GHZ state
cr = ClassicalRegister(3)
ghz = QuantumCircuit(qr, cr)
ghz.h(qr[2])
ghz.cx(qr[2], qr[3])
ghz.cx(qr[3], qr[4])
ghz.measure(qr[2],cr[0])
ghz.measure(qr[3],cr[1])
ghz.measure(qr[4],cr[2])

# Execute the GHZ circuit (with the same noise model)
job = qiskit.execute(ghz, backend=backend, shots=1000, noise_model=noise_model)
results = job.result()

# Results without mitigation
raw_counts = results.get_counts()
print("Results without mitigation:", raw_counts)

# Create a measurement filter from the calibration matrix
meas_filter = meas_fitter.filter
# Apply the filter to the raw counts to mitigate 
# the measurement errors
mitigated_counts = meas_filter.apply(raw_counts)
print("Results with mitigation:", {l:int(mitigated_counts[l]) for l in mitigated_counts})
```

```
Results without mitigation: {'000': 181, '001': 83, '010': 59, '011': 65, '100': 101, '101': 48, '110': 72, '111': 391}

Results with mitigation: {'000': 421, '001': 2, '011': 1, '100': 53, '110': 13, '111': 510}
```

## Contribution Guidelines

If you'd like to contribute to Qiskit Ignis, please take a look at our
[contribution guidelines](./CONTRIBUTING.md). This project adheres to Qiskit's [code of conduct](./CODE_OF_CONDUCT.md). By participating, you are expect to uphold to this code.

We use [GitHub issues](https://github.com/Qiskit/qiskit-ignis/issues) for tracking requests and bugs. Please use our [slack](https://qiskit.slack.com) for discussion and simple questions. To join our Slack community use the [link](https://join.slack.com/t/qiskit/shared_invite/enQtNDc2NjUzMjE4Mzc0LTMwZmE0YTM4ZThiNGJmODkzN2Y2NTNlMDIwYWNjYzA2ZmM1YTRlZGQ3OGM0NjcwMjZkZGE0MTA4MGQ1ZTVmYzk). For questions that are more suited for a forum we use the Qiskit tag in the [Stack Exchange](https://quantumcomputing.stackexchange.com/questions/tagged/qiskit).

## Next Steps

Now you're set up and ready to check out some of the other examples from our
[Qiskit Tutorials](https://github.com/Qiskit/qiskit-iqx-tutorials/tree/master/qiskit/advanced/ignis) repository.

## Authors and Citation

Qiskit Ignis is the work of [many people](https://github.com/Qiskit/qiskit-ignis/graphs/contributors) who contribute
to the project at different levels. If you use Qiskit, please cite as per the included [BibTeX file](https://github.com/Qiskit/qiskit/blob/master/Qiskit.bib).

## License

[Apache License 2.0](LICENSE.txt)




%package -n python3-qiskit-ignis
Summary:	Qiskit tools for quantum information science
Provides:	python-qiskit-ignis
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-qiskit-ignis
# Qiskit Ignis (_DEPRECATED_)

[![License](https://img.shields.io/github/license/Qiskit/qiskit-ignis.svg?style=popout-square)](https://opensource.org/licenses/Apache-2.0)[![Build Status](https://img.shields.io/travis/com/Qiskit/qiskit-ignis/master.svg?style=popout-square)](https://travis-ci.com/Qiskit/qiskit-ignis)[![](https://img.shields.io/github/release/Qiskit/qiskit-ignis.svg?style=popout-square)](https://github.com/Qiskit/qiskit-ignis/releases)[![](https://img.shields.io/pypi/dm/qiskit-ignis.svg?style=popout-square)](https://pypi.org/project/qiskit-ignis/)

**_NOTE_** _As of the version 0.7.0 Qiskit Ignis is deprecated and has been
superseded by the
[Qiskit Experiments](https://github.com/Qiskit/qiskit-experiments) project.
Active development on the project has stopped and only compatibility fixes
and other critical bugfixes will be accepted until the project is officially
retired and archived._

**Qiskit** is an open-source framework for working with noisy quantum computers at the level of pulses, circuits, and algorithms.

Qiskit is made up of elements that each work together to enable quantum computing. This element is **Ignis**, which provides tools for quantum hardware verification, noise characterization, and error correction.

## Migration Guide

As of version 0.7.0, Qiskit Ignis has been deprecated and some of its functionality 
was migrated into the `qiskit-experiments` package and into `qiskit-terra`.

* Ignis characterization module

  * This module was partly migrated to [`qiskit-experiments`](https://github.com/Qiskit/qiskit-experiments) and split into two different modules:
  `qiskit_experiments.library.calibration`
  `qiskit_experiments.library.characterization`
  * `AmpCal` is now replaced by `FineAmplitude`.
  * `ZZFitter` was not migrated yet.

* Ignis discriminator module

  * This module is in the process of migration to [`qiskit-experiments`](https://github.com/Qiskit/qiskit-experiments)

* Ignis mitigation module

  * The readout mitigator will be soon added to [`qiskit-terra`](https://github.com/Qiskit/qiskit-terra).
  * Experiments for generating the readout mitigators will be added to [`qiskit-experiments`](https://github.com/Qiskit/qiskit-experiments)
  * For use of mitigators with `qiskit.algorithms` and the [`QuantumInstance` class](https://qiskit.org/documentation/stubs/qiskit.utils.QuantumInstance.html?highlight=quantuminstance#qiskit.utils.QuantumInstance)
    this has been integrated into `qiskit-terra` directly with the `QuantumInstance`.

* Ignis verification module

  * Randomized benchmarking, Quantum Volume and State and Process Tomography were migrated to [`qiskit-experiments`](https://github.com/Qiskit/qiskit-experiments).
  * Migration of Gate-set tomography to [`qiskit-experiments`](https://github.com/Qiskit/qiskit-experiments) is in progress.
  * `topological_codes` will continue development under [NCCR-SPIN](https://github.com/NCCR-SPIN/topological_codes/blob/master/README.md), while the functionality is reintegrated into Qiskit. Some additional functionality can also be found in the offshoot project [qtcodes](https://github.com/yaleqc/qtcodes).
  * Currently the Accredition and Entanglement modules have not been migrated.  
The following table gives a more detailed breakdown that relates the function, as it existed in Ignis, 
to where it now lives after this move.

| Old | New | Library |
| :---: | :---: | :---: |
| qiskit.ignis.characterization.calibrations | qiskit_experiments.library.calibration | qiskit-experiments |
| qiskit.ignis.characterization.coherence | qiskit_experiments.library.characterization | qiskit-experiments |
| qiskit.ignis.mitigation | qiskit_terra.mitigation | qiskit-terra |
| qiskit.ignis.verification.quantum_volume | qiskit_experiments.library.quantum_volume | qiskit-experiments |
| qiskit.ignis.verification.randomized_benchmarking | qiskit_experiments.library.randomized_benchmarking | qiskit-experiments |
| qiskit.ignis.verification.tomography | qiskit_experiments.library.tomography | qiskit-experiments |

## Installation

We encourage installing Qiskit via the pip tool (a python package manager). The following command installs the core Qiskit components, including Ignis.

```bash
pip install qiskit
```

Pip will handle all dependencies automatically for us and you will always install the latest (and well-tested) version.

To install from source, follow the instructions in the [contribution guidelines](./CONTRIBUTING.md).

### Extra Requirements

Some functionality has extra optional requirements. If you're going to use any
visualization functions for fitters you'll need to install matplotlib. You
can do this with `pip install matplotlib` or when you install ignis with
`pip install qiskit-ignis[visualization]`. If you're going to use a cvx fitter
for running tomogography you'll need to install cvxpy. You can do this with
`pip install cvxpy` or when you install ignis with
`pip install qiskit-ignis[cvx]`. When performing expectation value measurement
error mitigation using the CTMP method performance can be improved using
just-in-time compiling if Numbda is installed. You can do this with
`pip install numba` or when you install ignis with
`pip install qiskit-ignis[jit]`. For using the discriminator classes in
`qiskit.ignis.measurement` scikit-learn needs to be installed. You can do this with
`pip install scikit-learn` or when you install ignis with
`pip install qiskit-ignis[iq]`. If you want to install all extra requirements
when you install ignis you can run `pip install qiskit-ignis[visualization,cvx,jit,iq]`.

## Creating your first quantum experiment with Qiskit Ignis
Now that you have Qiskit Ignis installed, you can start creating experiments, to reveal information about the device quality. Here is a basic example:

```
$ python
```

```python
# Import Qiskit classes
import qiskit
from qiskit import QuantumRegister, QuantumCircuit, ClassicalRegister
from qiskit.providers.aer import noise # import AER noise model

# Measurement error mitigation functions
from qiskit.ignis.mitigation.measurement import (complete_meas_cal,
                                                 CompleteMeasFitter, 
                                                 MeasurementFilter)

# Generate a noise model for the qubits
noise_model = noise.NoiseModel()
for qi in range(5):
    read_err = noise.errors.readout_error.ReadoutError([[0.75, 0.25],[0.1, 0.9]])
    noise_model.add_readout_error(read_err, [qi])

# Generate the measurement calibration circuits
# for running measurement error mitigation
qr = QuantumRegister(5)
meas_cals, state_labels = complete_meas_cal(qubit_list=[2,3,4], qr=qr)

# Execute the calibration circuits
backend = qiskit.Aer.get_backend('qasm_simulator')
job = qiskit.execute(meas_cals, backend=backend, shots=1000, noise_model=noise_model)
cal_results = job.result()

# Make a calibration matrix
meas_fitter = CompleteMeasFitter(cal_results, state_labels)

# Make a 3Q GHZ state
cr = ClassicalRegister(3)
ghz = QuantumCircuit(qr, cr)
ghz.h(qr[2])
ghz.cx(qr[2], qr[3])
ghz.cx(qr[3], qr[4])
ghz.measure(qr[2],cr[0])
ghz.measure(qr[3],cr[1])
ghz.measure(qr[4],cr[2])

# Execute the GHZ circuit (with the same noise model)
job = qiskit.execute(ghz, backend=backend, shots=1000, noise_model=noise_model)
results = job.result()

# Results without mitigation
raw_counts = results.get_counts()
print("Results without mitigation:", raw_counts)

# Create a measurement filter from the calibration matrix
meas_filter = meas_fitter.filter
# Apply the filter to the raw counts to mitigate 
# the measurement errors
mitigated_counts = meas_filter.apply(raw_counts)
print("Results with mitigation:", {l:int(mitigated_counts[l]) for l in mitigated_counts})
```

```
Results without mitigation: {'000': 181, '001': 83, '010': 59, '011': 65, '100': 101, '101': 48, '110': 72, '111': 391}

Results with mitigation: {'000': 421, '001': 2, '011': 1, '100': 53, '110': 13, '111': 510}
```

## Contribution Guidelines

If you'd like to contribute to Qiskit Ignis, please take a look at our
[contribution guidelines](./CONTRIBUTING.md). This project adheres to Qiskit's [code of conduct](./CODE_OF_CONDUCT.md). By participating, you are expect to uphold to this code.

We use [GitHub issues](https://github.com/Qiskit/qiskit-ignis/issues) for tracking requests and bugs. Please use our [slack](https://qiskit.slack.com) for discussion and simple questions. To join our Slack community use the [link](https://join.slack.com/t/qiskit/shared_invite/enQtNDc2NjUzMjE4Mzc0LTMwZmE0YTM4ZThiNGJmODkzN2Y2NTNlMDIwYWNjYzA2ZmM1YTRlZGQ3OGM0NjcwMjZkZGE0MTA4MGQ1ZTVmYzk). For questions that are more suited for a forum we use the Qiskit tag in the [Stack Exchange](https://quantumcomputing.stackexchange.com/questions/tagged/qiskit).

## Next Steps

Now you're set up and ready to check out some of the other examples from our
[Qiskit Tutorials](https://github.com/Qiskit/qiskit-iqx-tutorials/tree/master/qiskit/advanced/ignis) repository.

## Authors and Citation

Qiskit Ignis is the work of [many people](https://github.com/Qiskit/qiskit-ignis/graphs/contributors) who contribute
to the project at different levels. If you use Qiskit, please cite as per the included [BibTeX file](https://github.com/Qiskit/qiskit/blob/master/Qiskit.bib).

## License

[Apache License 2.0](LICENSE.txt)




%package help
Summary:	Development documents and examples for qiskit-ignis
Provides:	python3-qiskit-ignis-doc
%description help
# Qiskit Ignis (_DEPRECATED_)

[![License](https://img.shields.io/github/license/Qiskit/qiskit-ignis.svg?style=popout-square)](https://opensource.org/licenses/Apache-2.0)[![Build Status](https://img.shields.io/travis/com/Qiskit/qiskit-ignis/master.svg?style=popout-square)](https://travis-ci.com/Qiskit/qiskit-ignis)[![](https://img.shields.io/github/release/Qiskit/qiskit-ignis.svg?style=popout-square)](https://github.com/Qiskit/qiskit-ignis/releases)[![](https://img.shields.io/pypi/dm/qiskit-ignis.svg?style=popout-square)](https://pypi.org/project/qiskit-ignis/)

**_NOTE_** _As of the version 0.7.0 Qiskit Ignis is deprecated and has been
superseded by the
[Qiskit Experiments](https://github.com/Qiskit/qiskit-experiments) project.
Active development on the project has stopped and only compatibility fixes
and other critical bugfixes will be accepted until the project is officially
retired and archived._

**Qiskit** is an open-source framework for working with noisy quantum computers at the level of pulses, circuits, and algorithms.

Qiskit is made up of elements that each work together to enable quantum computing. This element is **Ignis**, which provides tools for quantum hardware verification, noise characterization, and error correction.

## Migration Guide

As of version 0.7.0, Qiskit Ignis has been deprecated and some of its functionality 
was migrated into the `qiskit-experiments` package and into `qiskit-terra`.

* Ignis characterization module

  * This module was partly migrated to [`qiskit-experiments`](https://github.com/Qiskit/qiskit-experiments) and split into two different modules:
  `qiskit_experiments.library.calibration`
  `qiskit_experiments.library.characterization`
  * `AmpCal` is now replaced by `FineAmplitude`.
  * `ZZFitter` was not migrated yet.

* Ignis discriminator module

  * This module is in the process of migration to [`qiskit-experiments`](https://github.com/Qiskit/qiskit-experiments)

* Ignis mitigation module

  * The readout mitigator will be soon added to [`qiskit-terra`](https://github.com/Qiskit/qiskit-terra).
  * Experiments for generating the readout mitigators will be added to [`qiskit-experiments`](https://github.com/Qiskit/qiskit-experiments)
  * For use of mitigators with `qiskit.algorithms` and the [`QuantumInstance` class](https://qiskit.org/documentation/stubs/qiskit.utils.QuantumInstance.html?highlight=quantuminstance#qiskit.utils.QuantumInstance)
    this has been integrated into `qiskit-terra` directly with the `QuantumInstance`.

* Ignis verification module

  * Randomized benchmarking, Quantum Volume and State and Process Tomography were migrated to [`qiskit-experiments`](https://github.com/Qiskit/qiskit-experiments).
  * Migration of Gate-set tomography to [`qiskit-experiments`](https://github.com/Qiskit/qiskit-experiments) is in progress.
  * `topological_codes` will continue development under [NCCR-SPIN](https://github.com/NCCR-SPIN/topological_codes/blob/master/README.md), while the functionality is reintegrated into Qiskit. Some additional functionality can also be found in the offshoot project [qtcodes](https://github.com/yaleqc/qtcodes).
  * Currently the Accredition and Entanglement modules have not been migrated.  
The following table gives a more detailed breakdown that relates the function, as it existed in Ignis, 
to where it now lives after this move.

| Old | New | Library |
| :---: | :---: | :---: |
| qiskit.ignis.characterization.calibrations | qiskit_experiments.library.calibration | qiskit-experiments |
| qiskit.ignis.characterization.coherence | qiskit_experiments.library.characterization | qiskit-experiments |
| qiskit.ignis.mitigation | qiskit_terra.mitigation | qiskit-terra |
| qiskit.ignis.verification.quantum_volume | qiskit_experiments.library.quantum_volume | qiskit-experiments |
| qiskit.ignis.verification.randomized_benchmarking | qiskit_experiments.library.randomized_benchmarking | qiskit-experiments |
| qiskit.ignis.verification.tomography | qiskit_experiments.library.tomography | qiskit-experiments |

## Installation

We encourage installing Qiskit via the pip tool (a python package manager). The following command installs the core Qiskit components, including Ignis.

```bash
pip install qiskit
```

Pip will handle all dependencies automatically for us and you will always install the latest (and well-tested) version.

To install from source, follow the instructions in the [contribution guidelines](./CONTRIBUTING.md).

### Extra Requirements

Some functionality has extra optional requirements. If you're going to use any
visualization functions for fitters you'll need to install matplotlib. You
can do this with `pip install matplotlib` or when you install ignis with
`pip install qiskit-ignis[visualization]`. If you're going to use a cvx fitter
for running tomogography you'll need to install cvxpy. You can do this with
`pip install cvxpy` or when you install ignis with
`pip install qiskit-ignis[cvx]`. When performing expectation value measurement
error mitigation using the CTMP method performance can be improved using
just-in-time compiling if Numbda is installed. You can do this with
`pip install numba` or when you install ignis with
`pip install qiskit-ignis[jit]`. For using the discriminator classes in
`qiskit.ignis.measurement` scikit-learn needs to be installed. You can do this with
`pip install scikit-learn` or when you install ignis with
`pip install qiskit-ignis[iq]`. If you want to install all extra requirements
when you install ignis you can run `pip install qiskit-ignis[visualization,cvx,jit,iq]`.

## Creating your first quantum experiment with Qiskit Ignis
Now that you have Qiskit Ignis installed, you can start creating experiments, to reveal information about the device quality. Here is a basic example:

```
$ python
```

```python
# Import Qiskit classes
import qiskit
from qiskit import QuantumRegister, QuantumCircuit, ClassicalRegister
from qiskit.providers.aer import noise # import AER noise model

# Measurement error mitigation functions
from qiskit.ignis.mitigation.measurement import (complete_meas_cal,
                                                 CompleteMeasFitter, 
                                                 MeasurementFilter)

# Generate a noise model for the qubits
noise_model = noise.NoiseModel()
for qi in range(5):
    read_err = noise.errors.readout_error.ReadoutError([[0.75, 0.25],[0.1, 0.9]])
    noise_model.add_readout_error(read_err, [qi])

# Generate the measurement calibration circuits
# for running measurement error mitigation
qr = QuantumRegister(5)
meas_cals, state_labels = complete_meas_cal(qubit_list=[2,3,4], qr=qr)

# Execute the calibration circuits
backend = qiskit.Aer.get_backend('qasm_simulator')
job = qiskit.execute(meas_cals, backend=backend, shots=1000, noise_model=noise_model)
cal_results = job.result()

# Make a calibration matrix
meas_fitter = CompleteMeasFitter(cal_results, state_labels)

# Make a 3Q GHZ state
cr = ClassicalRegister(3)
ghz = QuantumCircuit(qr, cr)
ghz.h(qr[2])
ghz.cx(qr[2], qr[3])
ghz.cx(qr[3], qr[4])
ghz.measure(qr[2],cr[0])
ghz.measure(qr[3],cr[1])
ghz.measure(qr[4],cr[2])

# Execute the GHZ circuit (with the same noise model)
job = qiskit.execute(ghz, backend=backend, shots=1000, noise_model=noise_model)
results = job.result()

# Results without mitigation
raw_counts = results.get_counts()
print("Results without mitigation:", raw_counts)

# Create a measurement filter from the calibration matrix
meas_filter = meas_fitter.filter
# Apply the filter to the raw counts to mitigate 
# the measurement errors
mitigated_counts = meas_filter.apply(raw_counts)
print("Results with mitigation:", {l:int(mitigated_counts[l]) for l in mitigated_counts})
```

```
Results without mitigation: {'000': 181, '001': 83, '010': 59, '011': 65, '100': 101, '101': 48, '110': 72, '111': 391}

Results with mitigation: {'000': 421, '001': 2, '011': 1, '100': 53, '110': 13, '111': 510}
```

## Contribution Guidelines

If you'd like to contribute to Qiskit Ignis, please take a look at our
[contribution guidelines](./CONTRIBUTING.md). This project adheres to Qiskit's [code of conduct](./CODE_OF_CONDUCT.md). By participating, you are expect to uphold to this code.

We use [GitHub issues](https://github.com/Qiskit/qiskit-ignis/issues) for tracking requests and bugs. Please use our [slack](https://qiskit.slack.com) for discussion and simple questions. To join our Slack community use the [link](https://join.slack.com/t/qiskit/shared_invite/enQtNDc2NjUzMjE4Mzc0LTMwZmE0YTM4ZThiNGJmODkzN2Y2NTNlMDIwYWNjYzA2ZmM1YTRlZGQ3OGM0NjcwMjZkZGE0MTA4MGQ1ZTVmYzk). For questions that are more suited for a forum we use the Qiskit tag in the [Stack Exchange](https://quantumcomputing.stackexchange.com/questions/tagged/qiskit).

## Next Steps

Now you're set up and ready to check out some of the other examples from our
[Qiskit Tutorials](https://github.com/Qiskit/qiskit-iqx-tutorials/tree/master/qiskit/advanced/ignis) repository.

## Authors and Citation

Qiskit Ignis is the work of [many people](https://github.com/Qiskit/qiskit-ignis/graphs/contributors) who contribute
to the project at different levels. If you use Qiskit, please cite as per the included [BibTeX file](https://github.com/Qiskit/qiskit/blob/master/Qiskit.bib).

## License

[Apache License 2.0](LICENSE.txt)




%prep
%autosetup -n qiskit-ignis-0.7.1

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-qiskit-ignis -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Tue Apr 11 2023 Python_Bot <Python_Bot@openeuler.org> - 0.7.1-1
- Package Spec generated