diff options
| author | CoprDistGit <infra@openeuler.org> | 2023-05-31 03:39:43 +0000 |
|---|---|---|
| committer | CoprDistGit <infra@openeuler.org> | 2023-05-31 03:39:43 +0000 |
| commit | 5a602a2874d7da63950cb75895f17b1600b66b3f (patch) | |
| tree | 057f10b726508c9de33f183a9b882a28ec73f642 | |
| parent | f848d307dcb0768aadb447770af6cb0c59fb8f56 (diff) | |
automatic import of python-quickgraph
| -rw-r--r-- | .gitignore | 1 | ||||
| -rw-r--r-- | python-quickgraph.spec | 273 | ||||
| -rw-r--r-- | sources | 1 |
3 files changed, 275 insertions, 0 deletions
@@ -0,0 +1 @@ +/quickgraph-0.45.tar.gz diff --git a/python-quickgraph.spec b/python-quickgraph.spec new file mode 100644 index 0000000..9cc880c --- /dev/null +++ b/python-quickgraph.spec @@ -0,0 +1,273 @@ +%global _empty_manifest_terminate_build 0 +Name: python-quickgraph +Version: 0.45 +Release: 1 +Summary: A Python package to view the skeleton of a social graph quickly. +License: MIT License +URL: https://gongqingyuan.wordpress.com/ +Source0: https://mirrors.nju.edu.cn/pypi/web/packages/bd/cc/099d303ced7dc3e87a3f9a82d8bfb0f7cb2e7ca05ced62dfe91f2a50a8fc/quickgraph-0.45.tar.gz +BuildArch: noarch + + +%description + + +## Introduction + +QuickGraph library can help you get a quick overview of a social graph in an extremely convenient way. QuickGraph will show the basic information of a graph, plot the CDF of selected metrics, characterize the largest connected component (LCC). + +## Overview + +QuickGraph library can help you get a quick overview of a social graph in an extremely convenient way. +Show the basic information of a graph, plot the CDF of selected metrics, characterize the largest connected component (LCC), compute representative structural hole related indexes. +Copyright (C) <2021-2026> by Qingyuan Gong, Fudan University (gongqingyuan@fudan.edu.cn) + +## Before Installation + +Please upgrade to Python 3.5 + +## System Requirements + +We have tested QuickGraph on both MacOSX (version 11.5.1) and Ubuntu (Version: 20.04 LTS). This library have not been tested on other platforms. + +## Usage + +Please run the following commond and install the dependent libiraires: + +Run +`conda config --add channels conda-forge` + +`conda update –all` +to make the libraries fit to the operation system + +Run +`pip install python-igraph` +to install the iGraph library + +Run `pip install leidenalg` +to help the modularity related analysis + +Note: Please change to `pip3 install` if you are using Apple M1 Chip + +## Functions +quickgraph.info(G) returns the the basic information of a graph and plots the CDF of selected metrics. + +quickgraph.LCC_analysis(G) characterizes the largest connected component (LCC) of the input graph G on selected metrics. + +## Example +We utilize the SCHOLAT Social Network dataset as one example. +https://www.scholat.com/research/opendata/#social_network + +```python +>>> import quickgraph +>>> quickgraph.demo() +Number of Nodes: 16007, Number of Edges: 202248 +Avg. degree: 25.2699, Avg. clustering coefficient: 0.5486 +Modularity (Leidenalg): 0.8651, Modularity (Label_Propagation): 0.8372 +Number of connected components: 5423, Number of nodes in LCC: 9583 ( 59.8676 %) +Time (G_info): 4.675 +LCC: Avg. degree = 40.023, Avg. clustering coefficient = 0.625, Modularity (Leidenalg): 0.8551, Modularity (Label_Propagation): 0.8209 +(rough) shortest path length = 1 : 1 ( 0.1 %), 2 : 26 ( 2.6 %), 3 : 98 ( 9.8 %), 4 : 162 ( 16.2 %), 5 : 133 ( 13.3 %), 6 : 65 ( 6.5 %), 7 : 12 ( 1.2 %), 8 : 3 ( 0.3 %), Avg. shortest path length = 4.316 +Time (LCC): 1.907 +``` + +# License + +See the LICENSE file for license rights and limitations (MIT). + + + + + +%package -n python3-quickgraph +Summary: A Python package to view the skeleton of a social graph quickly. +Provides: python-quickgraph +BuildRequires: python3-devel +BuildRequires: python3-setuptools +BuildRequires: python3-pip +%description -n python3-quickgraph + + +## Introduction + +QuickGraph library can help you get a quick overview of a social graph in an extremely convenient way. QuickGraph will show the basic information of a graph, plot the CDF of selected metrics, characterize the largest connected component (LCC). + +## Overview + +QuickGraph library can help you get a quick overview of a social graph in an extremely convenient way. +Show the basic information of a graph, plot the CDF of selected metrics, characterize the largest connected component (LCC), compute representative structural hole related indexes. +Copyright (C) <2021-2026> by Qingyuan Gong, Fudan University (gongqingyuan@fudan.edu.cn) + +## Before Installation + +Please upgrade to Python 3.5 + +## System Requirements + +We have tested QuickGraph on both MacOSX (version 11.5.1) and Ubuntu (Version: 20.04 LTS). This library have not been tested on other platforms. + +## Usage + +Please run the following commond and install the dependent libiraires: + +Run +`conda config --add channels conda-forge` + +`conda update –all` +to make the libraries fit to the operation system + +Run +`pip install python-igraph` +to install the iGraph library + +Run `pip install leidenalg` +to help the modularity related analysis + +Note: Please change to `pip3 install` if you are using Apple M1 Chip + +## Functions +quickgraph.info(G) returns the the basic information of a graph and plots the CDF of selected metrics. + +quickgraph.LCC_analysis(G) characterizes the largest connected component (LCC) of the input graph G on selected metrics. + +## Example +We utilize the SCHOLAT Social Network dataset as one example. +https://www.scholat.com/research/opendata/#social_network + +```python +>>> import quickgraph +>>> quickgraph.demo() +Number of Nodes: 16007, Number of Edges: 202248 +Avg. degree: 25.2699, Avg. clustering coefficient: 0.5486 +Modularity (Leidenalg): 0.8651, Modularity (Label_Propagation): 0.8372 +Number of connected components: 5423, Number of nodes in LCC: 9583 ( 59.8676 %) +Time (G_info): 4.675 +LCC: Avg. degree = 40.023, Avg. clustering coefficient = 0.625, Modularity (Leidenalg): 0.8551, Modularity (Label_Propagation): 0.8209 +(rough) shortest path length = 1 : 1 ( 0.1 %), 2 : 26 ( 2.6 %), 3 : 98 ( 9.8 %), 4 : 162 ( 16.2 %), 5 : 133 ( 13.3 %), 6 : 65 ( 6.5 %), 7 : 12 ( 1.2 %), 8 : 3 ( 0.3 %), Avg. shortest path length = 4.316 +Time (LCC): 1.907 +``` + +# License + +See the LICENSE file for license rights and limitations (MIT). + + + + + +%package help +Summary: Development documents and examples for quickgraph +Provides: python3-quickgraph-doc +%description help + + +## Introduction + +QuickGraph library can help you get a quick overview of a social graph in an extremely convenient way. QuickGraph will show the basic information of a graph, plot the CDF of selected metrics, characterize the largest connected component (LCC). + +## Overview + +QuickGraph library can help you get a quick overview of a social graph in an extremely convenient way. +Show the basic information of a graph, plot the CDF of selected metrics, characterize the largest connected component (LCC), compute representative structural hole related indexes. +Copyright (C) <2021-2026> by Qingyuan Gong, Fudan University (gongqingyuan@fudan.edu.cn) + +## Before Installation + +Please upgrade to Python 3.5 + +## System Requirements + +We have tested QuickGraph on both MacOSX (version 11.5.1) and Ubuntu (Version: 20.04 LTS). This library have not been tested on other platforms. + +## Usage + +Please run the following commond and install the dependent libiraires: + +Run +`conda config --add channels conda-forge` + +`conda update –all` +to make the libraries fit to the operation system + +Run +`pip install python-igraph` +to install the iGraph library + +Run `pip install leidenalg` +to help the modularity related analysis + +Note: Please change to `pip3 install` if you are using Apple M1 Chip + +## Functions +quickgraph.info(G) returns the the basic information of a graph and plots the CDF of selected metrics. + +quickgraph.LCC_analysis(G) characterizes the largest connected component (LCC) of the input graph G on selected metrics. + +## Example +We utilize the SCHOLAT Social Network dataset as one example. +https://www.scholat.com/research/opendata/#social_network + +```python +>>> import quickgraph +>>> quickgraph.demo() +Number of Nodes: 16007, Number of Edges: 202248 +Avg. degree: 25.2699, Avg. clustering coefficient: 0.5486 +Modularity (Leidenalg): 0.8651, Modularity (Label_Propagation): 0.8372 +Number of connected components: 5423, Number of nodes in LCC: 9583 ( 59.8676 %) +Time (G_info): 4.675 +LCC: Avg. degree = 40.023, Avg. clustering coefficient = 0.625, Modularity (Leidenalg): 0.8551, Modularity (Label_Propagation): 0.8209 +(rough) shortest path length = 1 : 1 ( 0.1 %), 2 : 26 ( 2.6 %), 3 : 98 ( 9.8 %), 4 : 162 ( 16.2 %), 5 : 133 ( 13.3 %), 6 : 65 ( 6.5 %), 7 : 12 ( 1.2 %), 8 : 3 ( 0.3 %), Avg. shortest path length = 4.316 +Time (LCC): 1.907 +``` + +# License + +See the LICENSE file for license rights and limitations (MIT). + + + + + +%prep +%autosetup -n quickgraph-0.45 + +%build +%py3_build + +%install +%py3_install +install -d -m755 %{buildroot}/%{_pkgdocdir} +if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi +if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi +if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi +if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi +pushd %{buildroot} +if [ -d usr/lib ]; then + find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/lib64 ]; then + find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/bin ]; then + find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/sbin ]; then + find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst +fi +touch doclist.lst +if [ -d usr/share/man ]; then + find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst +fi +popd +mv %{buildroot}/filelist.lst . +mv %{buildroot}/doclist.lst . + +%files -n python3-quickgraph -f filelist.lst +%dir %{python3_sitelib}/* + +%files help -f doclist.lst +%{_docdir}/* + +%changelog +* Wed May 31 2023 Python_Bot <Python_Bot@openeuler.org> - 0.45-1 +- Package Spec generated @@ -0,0 +1 @@ +d82d8434d6a9039aa9b1be2cdcf53f29 quickgraph-0.45.tar.gz |
