1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
|
%global _empty_manifest_terminate_build 0
Name: python-quickgraph
Version: 0.45
Release: 1
Summary: A Python package to view the skeleton of a social graph quickly.
License: MIT License
URL: https://gongqingyuan.wordpress.com/
Source0: https://mirrors.aliyun.com/pypi/web/packages/bd/cc/099d303ced7dc3e87a3f9a82d8bfb0f7cb2e7ca05ced62dfe91f2a50a8fc/quickgraph-0.45.tar.gz
BuildArch: noarch
%description
## Introduction
QuickGraph library can help you get a quick overview of a social graph in an extremely convenient way. QuickGraph will show the basic information of a graph, plot the CDF of selected metrics, characterize the largest connected component (LCC).
## Overview
QuickGraph library can help you get a quick overview of a social graph in an extremely convenient way.
Show the basic information of a graph, plot the CDF of selected metrics, characterize the largest connected component (LCC), compute representative structural hole related indexes.
Copyright (C) <2021-2026> by Qingyuan Gong, Fudan University (gongqingyuan@fudan.edu.cn)
## Before Installation
Please upgrade to Python 3.5
## System Requirements
We have tested QuickGraph on both MacOSX (version 11.5.1) and Ubuntu (Version: 20.04 LTS). This library have not been tested on other platforms.
## Usage
Please run the following commond and install the dependent libiraires:
Run
`conda config --add channels conda-forge`
`conda update –all`
to make the libraries fit to the operation system
Run
`pip install python-igraph`
to install the iGraph library
Run `pip install leidenalg`
to help the modularity related analysis
Note: Please change to `pip3 install` if you are using Apple M1 Chip
## Functions
quickgraph.info(G) returns the the basic information of a graph and plots the CDF of selected metrics.
quickgraph.LCC_analysis(G) characterizes the largest connected component (LCC) of the input graph G on selected metrics.
## Example
We utilize the SCHOLAT Social Network dataset as one example.
https://www.scholat.com/research/opendata/#social_network
```python
>>> import quickgraph
>>> quickgraph.demo()
Number of Nodes: 16007, Number of Edges: 202248
Avg. degree: 25.2699, Avg. clustering coefficient: 0.5486
Modularity (Leidenalg): 0.8651, Modularity (Label_Propagation): 0.8372
Number of connected components: 5423, Number of nodes in LCC: 9583 ( 59.8676 %)
Time (G_info): 4.675
LCC: Avg. degree = 40.023, Avg. clustering coefficient = 0.625, Modularity (Leidenalg): 0.8551, Modularity (Label_Propagation): 0.8209
(rough) shortest path length = 1 : 1 ( 0.1 %), 2 : 26 ( 2.6 %), 3 : 98 ( 9.8 %), 4 : 162 ( 16.2 %), 5 : 133 ( 13.3 %), 6 : 65 ( 6.5 %), 7 : 12 ( 1.2 %), 8 : 3 ( 0.3 %), Avg. shortest path length = 4.316
Time (LCC): 1.907
```
# License
See the LICENSE file for license rights and limitations (MIT).
%package -n python3-quickgraph
Summary: A Python package to view the skeleton of a social graph quickly.
Provides: python-quickgraph
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-quickgraph
## Introduction
QuickGraph library can help you get a quick overview of a social graph in an extremely convenient way. QuickGraph will show the basic information of a graph, plot the CDF of selected metrics, characterize the largest connected component (LCC).
## Overview
QuickGraph library can help you get a quick overview of a social graph in an extremely convenient way.
Show the basic information of a graph, plot the CDF of selected metrics, characterize the largest connected component (LCC), compute representative structural hole related indexes.
Copyright (C) <2021-2026> by Qingyuan Gong, Fudan University (gongqingyuan@fudan.edu.cn)
## Before Installation
Please upgrade to Python 3.5
## System Requirements
We have tested QuickGraph on both MacOSX (version 11.5.1) and Ubuntu (Version: 20.04 LTS). This library have not been tested on other platforms.
## Usage
Please run the following commond and install the dependent libiraires:
Run
`conda config --add channels conda-forge`
`conda update –all`
to make the libraries fit to the operation system
Run
`pip install python-igraph`
to install the iGraph library
Run `pip install leidenalg`
to help the modularity related analysis
Note: Please change to `pip3 install` if you are using Apple M1 Chip
## Functions
quickgraph.info(G) returns the the basic information of a graph and plots the CDF of selected metrics.
quickgraph.LCC_analysis(G) characterizes the largest connected component (LCC) of the input graph G on selected metrics.
## Example
We utilize the SCHOLAT Social Network dataset as one example.
https://www.scholat.com/research/opendata/#social_network
```python
>>> import quickgraph
>>> quickgraph.demo()
Number of Nodes: 16007, Number of Edges: 202248
Avg. degree: 25.2699, Avg. clustering coefficient: 0.5486
Modularity (Leidenalg): 0.8651, Modularity (Label_Propagation): 0.8372
Number of connected components: 5423, Number of nodes in LCC: 9583 ( 59.8676 %)
Time (G_info): 4.675
LCC: Avg. degree = 40.023, Avg. clustering coefficient = 0.625, Modularity (Leidenalg): 0.8551, Modularity (Label_Propagation): 0.8209
(rough) shortest path length = 1 : 1 ( 0.1 %), 2 : 26 ( 2.6 %), 3 : 98 ( 9.8 %), 4 : 162 ( 16.2 %), 5 : 133 ( 13.3 %), 6 : 65 ( 6.5 %), 7 : 12 ( 1.2 %), 8 : 3 ( 0.3 %), Avg. shortest path length = 4.316
Time (LCC): 1.907
```
# License
See the LICENSE file for license rights and limitations (MIT).
%package help
Summary: Development documents and examples for quickgraph
Provides: python3-quickgraph-doc
%description help
## Introduction
QuickGraph library can help you get a quick overview of a social graph in an extremely convenient way. QuickGraph will show the basic information of a graph, plot the CDF of selected metrics, characterize the largest connected component (LCC).
## Overview
QuickGraph library can help you get a quick overview of a social graph in an extremely convenient way.
Show the basic information of a graph, plot the CDF of selected metrics, characterize the largest connected component (LCC), compute representative structural hole related indexes.
Copyright (C) <2021-2026> by Qingyuan Gong, Fudan University (gongqingyuan@fudan.edu.cn)
## Before Installation
Please upgrade to Python 3.5
## System Requirements
We have tested QuickGraph on both MacOSX (version 11.5.1) and Ubuntu (Version: 20.04 LTS). This library have not been tested on other platforms.
## Usage
Please run the following commond and install the dependent libiraires:
Run
`conda config --add channels conda-forge`
`conda update –all`
to make the libraries fit to the operation system
Run
`pip install python-igraph`
to install the iGraph library
Run `pip install leidenalg`
to help the modularity related analysis
Note: Please change to `pip3 install` if you are using Apple M1 Chip
## Functions
quickgraph.info(G) returns the the basic information of a graph and plots the CDF of selected metrics.
quickgraph.LCC_analysis(G) characterizes the largest connected component (LCC) of the input graph G on selected metrics.
## Example
We utilize the SCHOLAT Social Network dataset as one example.
https://www.scholat.com/research/opendata/#social_network
```python
>>> import quickgraph
>>> quickgraph.demo()
Number of Nodes: 16007, Number of Edges: 202248
Avg. degree: 25.2699, Avg. clustering coefficient: 0.5486
Modularity (Leidenalg): 0.8651, Modularity (Label_Propagation): 0.8372
Number of connected components: 5423, Number of nodes in LCC: 9583 ( 59.8676 %)
Time (G_info): 4.675
LCC: Avg. degree = 40.023, Avg. clustering coefficient = 0.625, Modularity (Leidenalg): 0.8551, Modularity (Label_Propagation): 0.8209
(rough) shortest path length = 1 : 1 ( 0.1 %), 2 : 26 ( 2.6 %), 3 : 98 ( 9.8 %), 4 : 162 ( 16.2 %), 5 : 133 ( 13.3 %), 6 : 65 ( 6.5 %), 7 : 12 ( 1.2 %), 8 : 3 ( 0.3 %), Avg. shortest path length = 4.316
Time (LCC): 1.907
```
# License
See the LICENSE file for license rights and limitations (MIT).
%prep
%autosetup -n quickgraph-0.45
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "\"/%h/%f.gz\"\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-quickgraph -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Fri Jun 09 2023 Python_Bot <Python_Bot@openeuler.org> - 0.45-1
- Package Spec generated
|