blob: 2bc64313b5eae3cc0f86065e47005fe797416539 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
|
%global _empty_manifest_terminate_build 0
Name: python-quiverquant
Version: 0.1.57
Release: 1
Summary: Quiver Quantitative Alternative Data
License: MIT License
URL: https://github.com/Quiver-Quantitative/python-api
Source0: https://mirrors.aliyun.com/pypi/web/packages/45/7d/7b3fd786ec0f3cb09a5c86cd38bd3b44c900e31c889d2b2a49a3c37b5c61/quiverquant-0.1.57.tar.gz
BuildArch: noarch
Requires: python3-pandas
Requires: python3-requests
%description
# Quiver Quantitative Alternative Data
This package allows you to access several alternative data sources which are updated daily and mapped to tickers. These include:
- Trading by US congressmen
- Corporate Lobbying
- Government Contracts
- Patents
- Off-exchange short volume
- Companies' Wikipedia page views
- Discussion on Reddit's r/wallstreetbets
- Discussion on Reddit's r/SPACs
- Companies' Twitter followings
- Flights by corporate private jets
- Political Beta
- Insider Transactions
This data can be used for backtesting and implementing trading strategies.
### Receiving API Token
You can sign up for a Quiver API token [here](https://api.quiverquant.com).
The pricing starts at $10/month, please [e-mail me](mailto:chris@quiverquant.com) if that is an issue and I may be able to help cover.
## Getting Started
#### Prerequisites
- Python version 3 installed locally
- Pip installed locally
#### Installation
The package can easily be installed in your terminal by entering
```python
pip install quiverquant
```
### Usage
```python
#Import the package
import quiverquant
#Connect to the API using your token
#Replace <TOKEN> with your token
quiver = quiverquant.quiver("<TOKEN>")
#Get data on WallStreetBets discussion
dfWSB = quiver.wallstreetbets()
#Get data on WallStreetBets discussion of GameStop
dfWSB_GameStop = quiver.wallstreetbets("GME")
#Get recent trades by members of U.S. Congress
dfCongress = quiver.congress_trading()
#Get trades of a Tesla by members of congress
dfCongress_Tesla = quiver.congress_trading("TSLA")
#Get trades made by U.S. Senator Richard Burr
dfCongress_Burr = quiver.congress_trading("Richard Burr", politician=True)
#Get recent corporate lobbying
dfLobbying = quiver.lobbying()
#Get corporate lobbying by Apple
dfLobbying_Apple = quiver.lobbying("AAPL")
#Get data on government contracts
dfContracts = quiver.gov_contracts()
#Get data on government contracts to Lockheed Martin
dfContracts_Lockheed = quiver.gov_contracts("LMT")
#Get data on off-exchange short volume
dfOTC = quiver.offexchange()
#Get data on off-exchange short volume for AMC
dfOTC_AMC = quiver.offexchange("AMC")
#Get data on Wikipedia page views
dfWiki = quiver.wikipedia()
#Get data on Wikipedia page views of Microsoft
dfWiki_Microsoft = quiver.wikipedia("MSFT")
#Get data on companies' Twitter following
dfTwitter = quiver.twitter()
#Get data on GE's Twitter following
dfTwitter_GE = quiver.twitter("GE")
#Get data on r/SPACs discussion
dfSPACs = quiver.spacs()
#Get data on r/SPACs discussion of CCIV
dfSPACs_CCIV = quiver.spacs("CCIV")
#Get data on recent corporate private jet flights
dfFlights = quiver.flights()
#Get data on private jet flights by Target
dfFlights_Target = quiver.flights("TGT")
#Get data on patents by Apple
dfPatents_Apple = quiver.patents("AAPL")
#Get data on recent insider transactions
dfInsiders = quiver.insiders()
#Get data on recent insider transactions by Tesla insiders
dfInsiders_Tesla = quiver.insiders("TSLA")
```
%package -n python3-quiverquant
Summary: Quiver Quantitative Alternative Data
Provides: python-quiverquant
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-quiverquant
# Quiver Quantitative Alternative Data
This package allows you to access several alternative data sources which are updated daily and mapped to tickers. These include:
- Trading by US congressmen
- Corporate Lobbying
- Government Contracts
- Patents
- Off-exchange short volume
- Companies' Wikipedia page views
- Discussion on Reddit's r/wallstreetbets
- Discussion on Reddit's r/SPACs
- Companies' Twitter followings
- Flights by corporate private jets
- Political Beta
- Insider Transactions
This data can be used for backtesting and implementing trading strategies.
### Receiving API Token
You can sign up for a Quiver API token [here](https://api.quiverquant.com).
The pricing starts at $10/month, please [e-mail me](mailto:chris@quiverquant.com) if that is an issue and I may be able to help cover.
## Getting Started
#### Prerequisites
- Python version 3 installed locally
- Pip installed locally
#### Installation
The package can easily be installed in your terminal by entering
```python
pip install quiverquant
```
### Usage
```python
#Import the package
import quiverquant
#Connect to the API using your token
#Replace <TOKEN> with your token
quiver = quiverquant.quiver("<TOKEN>")
#Get data on WallStreetBets discussion
dfWSB = quiver.wallstreetbets()
#Get data on WallStreetBets discussion of GameStop
dfWSB_GameStop = quiver.wallstreetbets("GME")
#Get recent trades by members of U.S. Congress
dfCongress = quiver.congress_trading()
#Get trades of a Tesla by members of congress
dfCongress_Tesla = quiver.congress_trading("TSLA")
#Get trades made by U.S. Senator Richard Burr
dfCongress_Burr = quiver.congress_trading("Richard Burr", politician=True)
#Get recent corporate lobbying
dfLobbying = quiver.lobbying()
#Get corporate lobbying by Apple
dfLobbying_Apple = quiver.lobbying("AAPL")
#Get data on government contracts
dfContracts = quiver.gov_contracts()
#Get data on government contracts to Lockheed Martin
dfContracts_Lockheed = quiver.gov_contracts("LMT")
#Get data on off-exchange short volume
dfOTC = quiver.offexchange()
#Get data on off-exchange short volume for AMC
dfOTC_AMC = quiver.offexchange("AMC")
#Get data on Wikipedia page views
dfWiki = quiver.wikipedia()
#Get data on Wikipedia page views of Microsoft
dfWiki_Microsoft = quiver.wikipedia("MSFT")
#Get data on companies' Twitter following
dfTwitter = quiver.twitter()
#Get data on GE's Twitter following
dfTwitter_GE = quiver.twitter("GE")
#Get data on r/SPACs discussion
dfSPACs = quiver.spacs()
#Get data on r/SPACs discussion of CCIV
dfSPACs_CCIV = quiver.spacs("CCIV")
#Get data on recent corporate private jet flights
dfFlights = quiver.flights()
#Get data on private jet flights by Target
dfFlights_Target = quiver.flights("TGT")
#Get data on patents by Apple
dfPatents_Apple = quiver.patents("AAPL")
#Get data on recent insider transactions
dfInsiders = quiver.insiders()
#Get data on recent insider transactions by Tesla insiders
dfInsiders_Tesla = quiver.insiders("TSLA")
```
%package help
Summary: Development documents and examples for quiverquant
Provides: python3-quiverquant-doc
%description help
# Quiver Quantitative Alternative Data
This package allows you to access several alternative data sources which are updated daily and mapped to tickers. These include:
- Trading by US congressmen
- Corporate Lobbying
- Government Contracts
- Patents
- Off-exchange short volume
- Companies' Wikipedia page views
- Discussion on Reddit's r/wallstreetbets
- Discussion on Reddit's r/SPACs
- Companies' Twitter followings
- Flights by corporate private jets
- Political Beta
- Insider Transactions
This data can be used for backtesting and implementing trading strategies.
### Receiving API Token
You can sign up for a Quiver API token [here](https://api.quiverquant.com).
The pricing starts at $10/month, please [e-mail me](mailto:chris@quiverquant.com) if that is an issue and I may be able to help cover.
## Getting Started
#### Prerequisites
- Python version 3 installed locally
- Pip installed locally
#### Installation
The package can easily be installed in your terminal by entering
```python
pip install quiverquant
```
### Usage
```python
#Import the package
import quiverquant
#Connect to the API using your token
#Replace <TOKEN> with your token
quiver = quiverquant.quiver("<TOKEN>")
#Get data on WallStreetBets discussion
dfWSB = quiver.wallstreetbets()
#Get data on WallStreetBets discussion of GameStop
dfWSB_GameStop = quiver.wallstreetbets("GME")
#Get recent trades by members of U.S. Congress
dfCongress = quiver.congress_trading()
#Get trades of a Tesla by members of congress
dfCongress_Tesla = quiver.congress_trading("TSLA")
#Get trades made by U.S. Senator Richard Burr
dfCongress_Burr = quiver.congress_trading("Richard Burr", politician=True)
#Get recent corporate lobbying
dfLobbying = quiver.lobbying()
#Get corporate lobbying by Apple
dfLobbying_Apple = quiver.lobbying("AAPL")
#Get data on government contracts
dfContracts = quiver.gov_contracts()
#Get data on government contracts to Lockheed Martin
dfContracts_Lockheed = quiver.gov_contracts("LMT")
#Get data on off-exchange short volume
dfOTC = quiver.offexchange()
#Get data on off-exchange short volume for AMC
dfOTC_AMC = quiver.offexchange("AMC")
#Get data on Wikipedia page views
dfWiki = quiver.wikipedia()
#Get data on Wikipedia page views of Microsoft
dfWiki_Microsoft = quiver.wikipedia("MSFT")
#Get data on companies' Twitter following
dfTwitter = quiver.twitter()
#Get data on GE's Twitter following
dfTwitter_GE = quiver.twitter("GE")
#Get data on r/SPACs discussion
dfSPACs = quiver.spacs()
#Get data on r/SPACs discussion of CCIV
dfSPACs_CCIV = quiver.spacs("CCIV")
#Get data on recent corporate private jet flights
dfFlights = quiver.flights()
#Get data on private jet flights by Target
dfFlights_Target = quiver.flights("TGT")
#Get data on patents by Apple
dfPatents_Apple = quiver.patents("AAPL")
#Get data on recent insider transactions
dfInsiders = quiver.insiders()
#Get data on recent insider transactions by Tesla insiders
dfInsiders_Tesla = quiver.insiders("TSLA")
```
%prep
%autosetup -n quiverquant-0.1.57
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "\"/%h/%f.gz\"\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-quiverquant -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Thu Jun 08 2023 Python_Bot <Python_Bot@openeuler.org> - 0.1.57-1
- Package Spec generated
|