summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorCoprDistGit <infra@openeuler.org>2023-05-05 12:51:38 +0000
committerCoprDistGit <infra@openeuler.org>2023-05-05 12:51:38 +0000
commit58914dc84f7fab482d8a6b6556a69b5d979b61a5 (patch)
treef62d025513a635528efa39d2f0b8af2074781373
parent960389e0ce7255f84cafe93d26df8382070c969a (diff)
automatic import of python-randvarsopeneuler20.03
-rw-r--r--.gitignore1
-rw-r--r--python-randvars.spec1534
-rw-r--r--sources1
3 files changed, 1536 insertions, 0 deletions
diff --git a/.gitignore b/.gitignore
index e69de29..79d2de9 100644
--- a/.gitignore
+++ b/.gitignore
@@ -0,0 +1 @@
+/randvars-0.0.17.tar.gz
diff --git a/python-randvars.spec b/python-randvars.spec
new file mode 100644
index 0000000..11ac46e
--- /dev/null
+++ b/python-randvars.spec
@@ -0,0 +1,1534 @@
+%global _empty_manifest_terminate_build 0
+Name: python-randvars
+Version: 0.0.17
+Release: 1
+Summary: A library of random variate generation routines
+License: MIT
+URL: https://github.com/jgoodie/randomvariates
+Source0: https://mirrors.nju.edu.cn/pypi/web/packages/8d/c3/ea7b0913db31fe3a6af469eb0931fbc428e9f776f7959aec29de53c3e8ca/randvars-0.0.17.tar.gz
+BuildArch: noarch
+
+Requires: python3-numpy
+
+%description
+# Introduction
+RandomVariates is a library of random variate generation routines.
+The purpose behind this library was purely for educational purposes as
+a way to learn how to generate random variates using such methods as
+inverse transform, convolution, acceptance-rejection and composition
+methods. Additionally, this project was an excuse to get familiar with
+random number generators such as linear congruential generators,
+Tausworthe Generators and Widynski's "Squares: A Fast Counter-Based RNG"
+
+## Pseudo Random Number Generators
+The following pseudo random number (PRN) generators are contained in this project:
+* A basic "desert island" linear congruential (implemented in the uniform function)
+* taus() and tausunif(): A basic Tausworthe PRN generator and a Tausworthe Uniform
+PRN generator
+* squaresrng(): Widynski's "Squares: A Fast Counter-Based RNG"
+https://arxiv.org/pdf/2004.06278.pdf
+
+### Various helper functions to take advantage of the PRN generators
+* randseed(): Helper function to grab a "smaller" PRN from the Widynski squares PRN
+generator
+* generateseed(): Helper function to generate random seeds if the initial seed has
+not been set
+* set_seed() and get_seed(): Functions to get and set the seed.
+* reverse(): Helper function to reverse an integer
+
+## Random Variate Generation Routines
+* uniform(): Routine to generate uniform random variates between a and b.
+Default uniform(a=0, b=1)
+* norm(): Method to generate random normals. Default norm(mu=0, sd=1)
+* exponential(): Generate exponential random variates.
+Default exponential(lam=1)
+* erlang(): Routine to generate Erlang_k(lambda) random variates.
+Default erlang(lam=1, k=1, n=1)
+* weibull(): Method to generate weibull random variates: Default
+weibull(lam=1, beta=1)
+* triangular(): Generate triangular random variates with a-lower, b-mode
+and c-upper Default triangular(a=0, b=1, c=2)
+* Bernoulli(): random variates Default bernoulli(p=0.5)
+* Binomial(): Routine to generate binomial random variates Default binomial(t=1, p=0.5)
+* dicetoss(): Simple/fun method to generate X-sides dice toss. Default is
+a simple 6-sided dicetoss(sides=6)
+* geometric(): Method to generate geometric random variates
+Default geometric(p=0.5)
+* negbin(): Routine to generate discrete random negative binomials
+Default negbin(t=1, p=0.5)
+* chisq(): Generate Chi-squared random variates Default chisq(df=1)
+* poisson(): Method to generate Poisson random variates Default poisson(lam=1)
+* gamma(): Gamma random variates shape parameter k and a scale parameter θ.
+Implementation is based on Marsaglia and Tsang's transformation-rejection method
+of generating gamma random variates
+(https://dl.acm.org/doi/10.1145/358407.358414) Default gamma(k=1.0, theta=1)
+* lognormal(): Generate lognormal random variates Default lognormal(mu=0, sd=1)
+* beta(): Routine to generate beta random variates Default beta(a=1, b=1)
+
+## Limitations
+* Unlike Numpy's random variate generation routines, these are written
+in python. Numpy's random routines are written in C hence are much, much faster.
+* Beta and Gamma distributions only accept a, b, k and theta greater than one.
+Other random variate implementations, such as Numpy can handle values between
+0 and 1.
+* Setting the seed does not affect the Tausworthe and Tausworthe Uniform PRN
+generators
+
+### Distributions not currently implemented
+* Pearson Type V
+* Pearson Type VI
+* Log-Logistic
+* Johnson Bounded and Johnson unbounded
+* Bézier
+
+## Installation
+### Requirements:
+* Python 3.x
+* pip (https://pip.pypa.io/en/stable/installation/)
+
+To install the library, simply run the command:
+* pip install randvars
+
+## Usage
+To use the library, you need to import the library into your python script then
+create an instance of random variates:
+> import randomvariates
+
+> rv = randomvariates.random.RandomVariates()
+
+Alternately you can import random from randomvariates:
+> from randomvariates import random
+
+> rv = random.RandomVariates()
+
+### Seeds
+By default, a seed is not set when an instance or randomvariates is called.
+When a seed is set to None, randomvariates will randomly generate values for the
+various random variate routines. For repeatability, we can set a seed by calling
+the set_seed() method. Once a seed has been set, we can verify by calling the
+get_seed() method.
+
+> from randomvariates import random
+>
+> rv = random.RandomVariates()
+>
+> rv.set_seed(42)
+>
+> rv.get_seed()
+>
+> 42
+
+### Pseudo Random Number Generators
+To call the Widynski Squares PRN we can call the squaresrng() method.
+The squaresrng() method takes a center and key value. By default, the center
+and key are set to 1: squaresrng(ctr=1, key=1)
+> rv.squaresrng(42,21)
+>
+> 22904061750312427071608663841693658494663185320788517623007713567980053732104718807902410691731255108163475339984462249791973853173096390867949739437289512015166556428304384
+
+As of 11-06-2021, the Tausworthe PRN and Tausworthe Uniform PRN generator does
+not take a seed value (See Limitations above)
+To call the Tausworthe generators, simply call rv.taus() and rv.tausunif().
+By default taus() will generate 100 binary PRNs and rv.tausunif() will generate
+a single uniform(0,1):
+
+>rv.taus(n=100)
+>
+> array([0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0,
+ 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1,
+ 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1,
+ 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0,
+ 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0])
+
+> rv.tausunif(n=1)
+>
+>array([0.22627192])
+
+**Linear Congruential Generator (LCG)**
+
+The Uniform PRN generator is based off a "desert island" LCG of the form:
+
+> X_{i} = 16807 X_{i-1} mod(2**32 - 1)
+
+To call the uniform PRN generator simply call:
+> rv.uniform()
+>
+> array([0.0028378])
+
+To generate more than one unif(0,1), call the method with n=X where X is the number
+of unif(0,1)s to generate:
+
+> rv.uniform(n=25)
+>
+> array([0.0028378 , 0.69495865, 0.17008364, 0.59578035, 0.28035944,
+ 0.00113405, 0.05993272, 0.28927888, 0.91019703, 0.68147951,
+ 0.62609725, 0.81650574, 0.01200872, 0.83049583, 0.14336138,
+ 0.4747437 , 0.01741077, 0.62288295, 0.79372406, 0.12022883,
+ 0.68598241, 0.3064384 , 0.31021374, 0.76239295, 0.53823463])
+
+If we want to generate something other than unif(0,1), we can call the function
+with a=X and b=Y where X and Y are the lower and upper bounds of the uniform
+distribution:
+
+> rv.uniform(a=7, b=11, n=25)
+>
+> array([ 7.01135121, 9.77983461, 7.68033457, 9.3831214 , 8.12143777,
+ 7.00453619, 7.23973089, 8.15711553, 10.64078812, 9.72591803,
+ 9.50438901, 10.26602297, 7.04803487, 10.32198331, 7.57344553,
+ 8.89897481, 7.0696431 , 9.4915318 , 10.17489623, 7.48091533,
+ 9.74392966, 8.22575361, 8.24085498, 10.04957178, 9.15293853])
+
+### Distributions
+**Normal Random Variates**
+
+To generate random normal random variates, call the norm() function. By default,
+the norm() function will generate values with mean = 0 and standard deviation = 1.
+
+> rv.norm(n=25)
+>
+> array([-1.33438863, 0.12180611, 0.88656523, 0.50965537, -1.64358406,
+ -0.25778164, 0.57095618, 1.90310886, -0.05967737, -0.34183211,
+ 1.40942348, 0.588753 , -2.00879407, -0.27557057, -0.05367554,
+ 0.36562436, 1.51957859, -0.87597507, 0.27341912, 0.99870143,
+ 0.0563413 , -0.58931763, 0.06256761, 1.34552544, -0.41456673])
+
+To generate normals with other means and standard deviations, simply specify them
+when calling the function:
+
+> rv.norm(mu=42, sd=21, n=25)
+>
+> array([31.09197496, 90.91916642, 10.96438887, 63.22805106, 11.65331438,
+ 42.3934924 , 31.50241102, 57.32494887, 39.63622134, 50.84789244,
+ 29.66813461, 71.59768198, 51.23679519, 29.62926174, 38.93133399,
+ 21.33704934, 44.01056639, 85.43369206, 10.93161744, 35.5352881 ,
+ 47.6567116 , 62.89812129, 35.67247842, 48.76775665, 37.78179072])
+
+**Exponential Random Variates**
+
+By default, the exponential() function will generate a single, lambda=1 random variate.
+
+> rv.exponential()
+>
+> array([1.11685025])
+
+To generate exponentials with different rates (lambda), call the exponential function
+with lam=X, where X is 1/X rate:
+
+> rv.exponential(lam=42, n=25)
+>
+> array([0.02659167, 0.05889761, 0.0237974 , 0.05500891, 0.00990581,
+ 0.00665694, 0.01027128, 0.00311863, 0.00991187, 0.00155661,
+ 0.02532011, 0.00358105, 0.06095103, 0.02608557, 0.03126096,
+ 0.01844892, 0.04179501, 0.00204212, 0.01357267, 0.02956585,
+ 0.05493093, 0.04847486, 0.03083947, 0.03648715, 0.02353137])
+
+**Erlang Random Variates**
+
+Random Erlang variates can be generated by calling the erlang() function. By default,
+the erlang function will generate variates with lambda = 1 and shape (k) = 1:
+
+> rv.erlang()
+>
+> array([0.39646936])
+
+To generate erlangs with different rate and shape parameters, set lam=X and k = Y,
+where X is the lambda rate and Y is the shape:
+
+> rv.erlang(lam=5, k=5, n=25)
+>
+> array([0.39646936, 0.08803646, 0.45897164, 0.10449879, 1.07778402,
+ 1.41096694, 1.04868842, 2.09746919, 1.07729126, 2.76008462,
+ 0.42352393, 1.96869049, 0.08046101, 0.40697774, 0.31337257,
+ 0.61761435, 0.18975684, 2.49867301, 0.8335498 , 0.34090517,
+ 0.10486022, 0.13990266, 0.31996746, 0.24335083, 0.46553741])
+
+**Weibull Random Variates**
+
+To generate values from the Weibull distribution, call the weibull() method with
+lam and beta. By default, lam and beta are set to 1 weibull(self, lam=1, beta=1).
+
+> rv.weibull()
+>
+> array([0.00284184])
+
+To generate weibull values with different lam (shape) and beta (scale), set lam
+and beta as such:
+
+> rv.weibull(lam=3, beta=5, n=25)
+>
+> array([0.10318073, 0.34497802, 0.23822211, 0.32680215, 0.26688172,
+ 0.08587253, 0.19102132, 0.26887509, 0.39745421, 0.3424279 ,
+ 0.33224353, 0.37046057, 0.13781682, 0.37386295, 0.2295085 ,
+ 0.30523775, 0.14852653, 0.33166333, 0.36519926, 0.22099585,
+ 0.34327599, 0.2726182 , 0.2734267 , 0.35840856, 0.31657801])
+
+**Triangular Random Variates**
+
+By default, the randomvariates library will generate Triangular(0,1,2) values from
+a triangular distribution:
+
+> rv.triangular()
+>
+>array([0.07533662])
+
+To generate values from a Triangular distribution with lower bound a, mode b and
+upper bound c, call the triangular() function with a, b, and c set:
+
+> rv.triangular(a=-5, b=0, c=5, n=25)
+>
+> array([-4.6233169 , 1.09461047, -2.08380691, 0.50433737, -1.25594176,
+ -4.76187742, -3.26892052, -1.19685075, 2.88100295, 1.00925764,
+ 0.67621261, 1.97102115, -4.22512206, 2.08877884, -2.32267501,
+ -0.12791778, -4.06697336, 0.65766738, 1.7884899 , -2.54817586,
+ 1.0375665 , -1.08567757, -1.06163902, 1.55321124, 0.19497467])
+
+**Bernoulli Random Variates**
+
+To generate bernoulli(p) random values, call the bernoulli() method with
+probability, p. By default, the bernoulli() method generates bernoulli(0.5) random
+values.
+
+> rv.bernoulli()
+>
+> array([0])
+>
+> rv.bernoulli(n=25)
+>
+>array([0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0,
+ 0, 1, 1])
+
+To generate bernoulli(0.8) random values, set p=0.8:
+
+> rv.bernoulli(p=0.8, n=25)
+>
+> array([0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1,
+ 1, 1, 1])
+
+**Binomial Random Variates**
+
+Binomial(n,p) random values can be generated with the binomial() function.
+By default, the binomial() function generates 1 trial at p=0.5:
+
+> rv.binomial()
+>
+> array([0])
+
+Note: Don't confuse t=trials and n=number of values to generate. To generate 25
+binomials with 10 trials, and probability 0.5, we would specify
+binomial(t=10, p=0.5, n=25):
+
+> rv.binomial(t=10, p=0.5, n=25)
+>
+> array([6, 5, 3, 3, 5, 3, 5, 7, 6, 5, 3, 5, 4, 5, 4, 4, 2, 6, 6, 6, 4, 4,
+ 6, 5, 2])
+
+**Random X-sided Dice Toss**
+
+For the D&D fans, the dicetoss() function allows you to generate an X-sided
+die toss. For example, to generate 10, 20-sided dice tosses, simply call the
+dicetoss() function. By default, dicetoss() defaults to a 6-sided die:
+
+> rv.dicetoss(n=10)
+>
+> array([6., 6., 5., 1., 6., 3., 1., 5., 3., 5.])
+
+To generate 10, 20-sided dice toss, set the side variable to 20:
+
+>rv.dicetoss(sides=20, n=10)
+>
+>
+> array([20., 20., 17., 4., 20., 10., 3., 15., 10., 14.])
+
+**Geometric Random Variates**
+
+To generate geometric random values, use the geometric() function. By default,
+the geometric function is set to a probability of 0.5:
+
+> rv.geometric()
+>
+> array([5.])
+
+To generate geometric values with a different probability, set p equal to the new
+probability:
+
+> rv.geometric(p=0.42, n=25)
+>
+> array([ 7., 12., 4., 1., 6., 2., 1., 3., 2., 3., 1., 1., 2.,
+ 1., 2., 7., 3., 1., 4., 2., 1., 2., 2., 4., 1.])
+
+**Negative Binomial Random Variates**
+
+To generate negative binomial random variates, call the negbin() funtion. By default.
+negbin() will generate values with a probability of 0.5 and 1 trial:
+
+> rv.negbin()
+>
+> array([1.])
+
+To generate 25 negbin values with a probability of 0.42 and 10 trials:
+
+> rv.negbin(t=10, p=0.42, n=25)
+>
+> array([35., 21., 30., 26., 24., 24., 20., 28., 21., 22., 29., 18., 22.,
+ 26., 19., 19., 22., 22., 21., 25., 25., 26., 22., 27., 24.])
+
+**Chi-Squared Random Variates**
+
+Chi-Squared random values can be generated by calling the chisq() method.
+By default, chisq() generates values with df=1:
+
+> rv.chisq()
+>
+> array([0.02609475])
+
+To generated chi-squared values with different degrees of freedom, set df=X where
+X is the degrees of freedom:
+
+> rv.chisq(df=3, n=25)
+>
+> array([4.03013192, 2.1255032 , 1.41496674, 2.49301795, 4.34632967,
+ 7.07483573, 8.80603908, 0.40890643, 1.02559277, 0.3263966 ,
+ 1.16851057, 9.41171507, 0.10331964, 0.4620984 , 1.30332824,
+ 2.86123596, 6.30155659, 2.34574672, 6.51270442, 1.8040176 ,
+ 2.73061465, 2.18939106, 0.17322089, 1.95769521, 1.34417982])
+
+**Poisson Random Variates**
+
+By default, the poisson() method will generate poission random values with lam=1:
+
+> rv.poisson()
+>
+> array([18])
+
+To generate possion random variates for different lambda values, set lam=X,
+where X is the new labmda value:
+
+> rv.poisson(lam=3, n=25)
+>
+> array([4, 7, 3, 2, 3, 3, 0, 3, 5, 1, 3, 2, 9, 3, 1, 3, 2, 3, 4, 5, 2, 4,
+ 5, 7, 2])
+
+**Gamma Random Variates**
+
+Gamma random values can be generated by calling the gamma() function. By default,
+gamma() generates values with a shape parameter (k) and scale parameter (theta)
+equal to one:
+
+> rv.gamma()
+>
+> array([0.0496442])
+
+To generate gamma values with different shape and scale parameters set k = shape
+and theta = scale. i.e.) k=3, theta=3
+
+> rv.gamma(k=3, theta=3, n=25)
+>
+> array([ 2.86760705, 8.28296535, 15.61018946, 13.89795502, 28.71023072,
+ 0.98039742, 14.78770565, 8.31682721, 7.12832689, 11.31451427,
+ 14.12970636, 9.03501294, 18.95392932, 8.94168958, 2.80143093,
+ 7.09702805, 1.98142127, 6.69417433, 7.64163982, 12.51436153,
+ 9.84781027, 7.80807741, 6.79817083, 7.22277182, 13.64361073])
+
+**Lognormal Random Variates**
+
+Lognormal values can be generated with the lognormal() function:
+
+> rv.lognormal()
+>
+> array([0.24196649])
+
+To generate lognormal values with different mean and standards deviation, specify
+the mu=X and sd=Y parameters where mu=X is the mean and sd=Y is the
+standard deviation:
+
+> rv.lognormal(mu=5, sd=2, n=10)
+>
+> array([ 8.68926144, 1165.743983 , 542.36799958, 50.00329616,
+ 2518.21870637, 6.20023729, 2.58041108, 83.05661697,
+ 617.74324652, 122.09875036])
+
+**Beta Random Variates**
+
+Beta random values can be generated via the beta() method. The beta() method takes
+two shape parameters - a and b. By default, the a and b parameters are set to 1:
+
+> rv.beta()
+>
+> array([0.01995716])
+
+To generate beta values with different shape parameters, specify different shape
+values as such:
+
+> rv.beta(a = 2, b = 4, n = 25)
+>
+> array([0.05843224, 0.17390187, 0.50358743, 0.50885326, 0.71498465,
+ 0.01966699, 0.53999924, 0.18878303, 0.30052695, 0.66454575,
+ 0.47430718, 0.23385242, 0.69526851, 0.48014572, 0.07415403,
+ 0.22019374, 0.07180719, 0.17131799, 0.19680721, 0.23783813,
+ 0.32510779, 0.29333343, 0.20013351, 0.27709332, 0.51118395])
+
+
+
+# Release History
+
+2021-11-10: More stupid seed fixes
+
+2021-11-10: Erlang fixes
+
+2021-11-08: Beta fixes
+
+2021-11-08: Gamma fixes
+
+2021-11-08: Refactored poisson to correctly handle the situation when a seed is set
+
+2021-11-08: Found a bug in the seed algorithm
+
+2021-11-08: Refactored norm to properly hand seed==0
+
+2021-11-08: Refactored chisq method to work around "funky" seeding issues
+
+2021-11-08: Refactored the negbin method to properly handle the situation when a
+seed is set.
+
+2021-11-08: Refactored the binomial method to properly handle the situation when a
+seed is set.
+
+2021-11-06: Initial creation of pip package
+
+2021-11-06: Added Tausworthe Generator and a uniform generator based off the
+Tausworthe generator.
+
+
+
+%package -n python3-randvars
+Summary: A library of random variate generation routines
+Provides: python-randvars
+BuildRequires: python3-devel
+BuildRequires: python3-setuptools
+BuildRequires: python3-pip
+%description -n python3-randvars
+# Introduction
+RandomVariates is a library of random variate generation routines.
+The purpose behind this library was purely for educational purposes as
+a way to learn how to generate random variates using such methods as
+inverse transform, convolution, acceptance-rejection and composition
+methods. Additionally, this project was an excuse to get familiar with
+random number generators such as linear congruential generators,
+Tausworthe Generators and Widynski's "Squares: A Fast Counter-Based RNG"
+
+## Pseudo Random Number Generators
+The following pseudo random number (PRN) generators are contained in this project:
+* A basic "desert island" linear congruential (implemented in the uniform function)
+* taus() and tausunif(): A basic Tausworthe PRN generator and a Tausworthe Uniform
+PRN generator
+* squaresrng(): Widynski's "Squares: A Fast Counter-Based RNG"
+https://arxiv.org/pdf/2004.06278.pdf
+
+### Various helper functions to take advantage of the PRN generators
+* randseed(): Helper function to grab a "smaller" PRN from the Widynski squares PRN
+generator
+* generateseed(): Helper function to generate random seeds if the initial seed has
+not been set
+* set_seed() and get_seed(): Functions to get and set the seed.
+* reverse(): Helper function to reverse an integer
+
+## Random Variate Generation Routines
+* uniform(): Routine to generate uniform random variates between a and b.
+Default uniform(a=0, b=1)
+* norm(): Method to generate random normals. Default norm(mu=0, sd=1)
+* exponential(): Generate exponential random variates.
+Default exponential(lam=1)
+* erlang(): Routine to generate Erlang_k(lambda) random variates.
+Default erlang(lam=1, k=1, n=1)
+* weibull(): Method to generate weibull random variates: Default
+weibull(lam=1, beta=1)
+* triangular(): Generate triangular random variates with a-lower, b-mode
+and c-upper Default triangular(a=0, b=1, c=2)
+* Bernoulli(): random variates Default bernoulli(p=0.5)
+* Binomial(): Routine to generate binomial random variates Default binomial(t=1, p=0.5)
+* dicetoss(): Simple/fun method to generate X-sides dice toss. Default is
+a simple 6-sided dicetoss(sides=6)
+* geometric(): Method to generate geometric random variates
+Default geometric(p=0.5)
+* negbin(): Routine to generate discrete random negative binomials
+Default negbin(t=1, p=0.5)
+* chisq(): Generate Chi-squared random variates Default chisq(df=1)
+* poisson(): Method to generate Poisson random variates Default poisson(lam=1)
+* gamma(): Gamma random variates shape parameter k and a scale parameter θ.
+Implementation is based on Marsaglia and Tsang's transformation-rejection method
+of generating gamma random variates
+(https://dl.acm.org/doi/10.1145/358407.358414) Default gamma(k=1.0, theta=1)
+* lognormal(): Generate lognormal random variates Default lognormal(mu=0, sd=1)
+* beta(): Routine to generate beta random variates Default beta(a=1, b=1)
+
+## Limitations
+* Unlike Numpy's random variate generation routines, these are written
+in python. Numpy's random routines are written in C hence are much, much faster.
+* Beta and Gamma distributions only accept a, b, k and theta greater than one.
+Other random variate implementations, such as Numpy can handle values between
+0 and 1.
+* Setting the seed does not affect the Tausworthe and Tausworthe Uniform PRN
+generators
+
+### Distributions not currently implemented
+* Pearson Type V
+* Pearson Type VI
+* Log-Logistic
+* Johnson Bounded and Johnson unbounded
+* Bézier
+
+## Installation
+### Requirements:
+* Python 3.x
+* pip (https://pip.pypa.io/en/stable/installation/)
+
+To install the library, simply run the command:
+* pip install randvars
+
+## Usage
+To use the library, you need to import the library into your python script then
+create an instance of random variates:
+> import randomvariates
+
+> rv = randomvariates.random.RandomVariates()
+
+Alternately you can import random from randomvariates:
+> from randomvariates import random
+
+> rv = random.RandomVariates()
+
+### Seeds
+By default, a seed is not set when an instance or randomvariates is called.
+When a seed is set to None, randomvariates will randomly generate values for the
+various random variate routines. For repeatability, we can set a seed by calling
+the set_seed() method. Once a seed has been set, we can verify by calling the
+get_seed() method.
+
+> from randomvariates import random
+>
+> rv = random.RandomVariates()
+>
+> rv.set_seed(42)
+>
+> rv.get_seed()
+>
+> 42
+
+### Pseudo Random Number Generators
+To call the Widynski Squares PRN we can call the squaresrng() method.
+The squaresrng() method takes a center and key value. By default, the center
+and key are set to 1: squaresrng(ctr=1, key=1)
+> rv.squaresrng(42,21)
+>
+> 22904061750312427071608663841693658494663185320788517623007713567980053732104718807902410691731255108163475339984462249791973853173096390867949739437289512015166556428304384
+
+As of 11-06-2021, the Tausworthe PRN and Tausworthe Uniform PRN generator does
+not take a seed value (See Limitations above)
+To call the Tausworthe generators, simply call rv.taus() and rv.tausunif().
+By default taus() will generate 100 binary PRNs and rv.tausunif() will generate
+a single uniform(0,1):
+
+>rv.taus(n=100)
+>
+> array([0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0,
+ 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1,
+ 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1,
+ 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0,
+ 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0])
+
+> rv.tausunif(n=1)
+>
+>array([0.22627192])
+
+**Linear Congruential Generator (LCG)**
+
+The Uniform PRN generator is based off a "desert island" LCG of the form:
+
+> X_{i} = 16807 X_{i-1} mod(2**32 - 1)
+
+To call the uniform PRN generator simply call:
+> rv.uniform()
+>
+> array([0.0028378])
+
+To generate more than one unif(0,1), call the method with n=X where X is the number
+of unif(0,1)s to generate:
+
+> rv.uniform(n=25)
+>
+> array([0.0028378 , 0.69495865, 0.17008364, 0.59578035, 0.28035944,
+ 0.00113405, 0.05993272, 0.28927888, 0.91019703, 0.68147951,
+ 0.62609725, 0.81650574, 0.01200872, 0.83049583, 0.14336138,
+ 0.4747437 , 0.01741077, 0.62288295, 0.79372406, 0.12022883,
+ 0.68598241, 0.3064384 , 0.31021374, 0.76239295, 0.53823463])
+
+If we want to generate something other than unif(0,1), we can call the function
+with a=X and b=Y where X and Y are the lower and upper bounds of the uniform
+distribution:
+
+> rv.uniform(a=7, b=11, n=25)
+>
+> array([ 7.01135121, 9.77983461, 7.68033457, 9.3831214 , 8.12143777,
+ 7.00453619, 7.23973089, 8.15711553, 10.64078812, 9.72591803,
+ 9.50438901, 10.26602297, 7.04803487, 10.32198331, 7.57344553,
+ 8.89897481, 7.0696431 , 9.4915318 , 10.17489623, 7.48091533,
+ 9.74392966, 8.22575361, 8.24085498, 10.04957178, 9.15293853])
+
+### Distributions
+**Normal Random Variates**
+
+To generate random normal random variates, call the norm() function. By default,
+the norm() function will generate values with mean = 0 and standard deviation = 1.
+
+> rv.norm(n=25)
+>
+> array([-1.33438863, 0.12180611, 0.88656523, 0.50965537, -1.64358406,
+ -0.25778164, 0.57095618, 1.90310886, -0.05967737, -0.34183211,
+ 1.40942348, 0.588753 , -2.00879407, -0.27557057, -0.05367554,
+ 0.36562436, 1.51957859, -0.87597507, 0.27341912, 0.99870143,
+ 0.0563413 , -0.58931763, 0.06256761, 1.34552544, -0.41456673])
+
+To generate normals with other means and standard deviations, simply specify them
+when calling the function:
+
+> rv.norm(mu=42, sd=21, n=25)
+>
+> array([31.09197496, 90.91916642, 10.96438887, 63.22805106, 11.65331438,
+ 42.3934924 , 31.50241102, 57.32494887, 39.63622134, 50.84789244,
+ 29.66813461, 71.59768198, 51.23679519, 29.62926174, 38.93133399,
+ 21.33704934, 44.01056639, 85.43369206, 10.93161744, 35.5352881 ,
+ 47.6567116 , 62.89812129, 35.67247842, 48.76775665, 37.78179072])
+
+**Exponential Random Variates**
+
+By default, the exponential() function will generate a single, lambda=1 random variate.
+
+> rv.exponential()
+>
+> array([1.11685025])
+
+To generate exponentials with different rates (lambda), call the exponential function
+with lam=X, where X is 1/X rate:
+
+> rv.exponential(lam=42, n=25)
+>
+> array([0.02659167, 0.05889761, 0.0237974 , 0.05500891, 0.00990581,
+ 0.00665694, 0.01027128, 0.00311863, 0.00991187, 0.00155661,
+ 0.02532011, 0.00358105, 0.06095103, 0.02608557, 0.03126096,
+ 0.01844892, 0.04179501, 0.00204212, 0.01357267, 0.02956585,
+ 0.05493093, 0.04847486, 0.03083947, 0.03648715, 0.02353137])
+
+**Erlang Random Variates**
+
+Random Erlang variates can be generated by calling the erlang() function. By default,
+the erlang function will generate variates with lambda = 1 and shape (k) = 1:
+
+> rv.erlang()
+>
+> array([0.39646936])
+
+To generate erlangs with different rate and shape parameters, set lam=X and k = Y,
+where X is the lambda rate and Y is the shape:
+
+> rv.erlang(lam=5, k=5, n=25)
+>
+> array([0.39646936, 0.08803646, 0.45897164, 0.10449879, 1.07778402,
+ 1.41096694, 1.04868842, 2.09746919, 1.07729126, 2.76008462,
+ 0.42352393, 1.96869049, 0.08046101, 0.40697774, 0.31337257,
+ 0.61761435, 0.18975684, 2.49867301, 0.8335498 , 0.34090517,
+ 0.10486022, 0.13990266, 0.31996746, 0.24335083, 0.46553741])
+
+**Weibull Random Variates**
+
+To generate values from the Weibull distribution, call the weibull() method with
+lam and beta. By default, lam and beta are set to 1 weibull(self, lam=1, beta=1).
+
+> rv.weibull()
+>
+> array([0.00284184])
+
+To generate weibull values with different lam (shape) and beta (scale), set lam
+and beta as such:
+
+> rv.weibull(lam=3, beta=5, n=25)
+>
+> array([0.10318073, 0.34497802, 0.23822211, 0.32680215, 0.26688172,
+ 0.08587253, 0.19102132, 0.26887509, 0.39745421, 0.3424279 ,
+ 0.33224353, 0.37046057, 0.13781682, 0.37386295, 0.2295085 ,
+ 0.30523775, 0.14852653, 0.33166333, 0.36519926, 0.22099585,
+ 0.34327599, 0.2726182 , 0.2734267 , 0.35840856, 0.31657801])
+
+**Triangular Random Variates**
+
+By default, the randomvariates library will generate Triangular(0,1,2) values from
+a triangular distribution:
+
+> rv.triangular()
+>
+>array([0.07533662])
+
+To generate values from a Triangular distribution with lower bound a, mode b and
+upper bound c, call the triangular() function with a, b, and c set:
+
+> rv.triangular(a=-5, b=0, c=5, n=25)
+>
+> array([-4.6233169 , 1.09461047, -2.08380691, 0.50433737, -1.25594176,
+ -4.76187742, -3.26892052, -1.19685075, 2.88100295, 1.00925764,
+ 0.67621261, 1.97102115, -4.22512206, 2.08877884, -2.32267501,
+ -0.12791778, -4.06697336, 0.65766738, 1.7884899 , -2.54817586,
+ 1.0375665 , -1.08567757, -1.06163902, 1.55321124, 0.19497467])
+
+**Bernoulli Random Variates**
+
+To generate bernoulli(p) random values, call the bernoulli() method with
+probability, p. By default, the bernoulli() method generates bernoulli(0.5) random
+values.
+
+> rv.bernoulli()
+>
+> array([0])
+>
+> rv.bernoulli(n=25)
+>
+>array([0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0,
+ 0, 1, 1])
+
+To generate bernoulli(0.8) random values, set p=0.8:
+
+> rv.bernoulli(p=0.8, n=25)
+>
+> array([0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1,
+ 1, 1, 1])
+
+**Binomial Random Variates**
+
+Binomial(n,p) random values can be generated with the binomial() function.
+By default, the binomial() function generates 1 trial at p=0.5:
+
+> rv.binomial()
+>
+> array([0])
+
+Note: Don't confuse t=trials and n=number of values to generate. To generate 25
+binomials with 10 trials, and probability 0.5, we would specify
+binomial(t=10, p=0.5, n=25):
+
+> rv.binomial(t=10, p=0.5, n=25)
+>
+> array([6, 5, 3, 3, 5, 3, 5, 7, 6, 5, 3, 5, 4, 5, 4, 4, 2, 6, 6, 6, 4, 4,
+ 6, 5, 2])
+
+**Random X-sided Dice Toss**
+
+For the D&D fans, the dicetoss() function allows you to generate an X-sided
+die toss. For example, to generate 10, 20-sided dice tosses, simply call the
+dicetoss() function. By default, dicetoss() defaults to a 6-sided die:
+
+> rv.dicetoss(n=10)
+>
+> array([6., 6., 5., 1., 6., 3., 1., 5., 3., 5.])
+
+To generate 10, 20-sided dice toss, set the side variable to 20:
+
+>rv.dicetoss(sides=20, n=10)
+>
+>
+> array([20., 20., 17., 4., 20., 10., 3., 15., 10., 14.])
+
+**Geometric Random Variates**
+
+To generate geometric random values, use the geometric() function. By default,
+the geometric function is set to a probability of 0.5:
+
+> rv.geometric()
+>
+> array([5.])
+
+To generate geometric values with a different probability, set p equal to the new
+probability:
+
+> rv.geometric(p=0.42, n=25)
+>
+> array([ 7., 12., 4., 1., 6., 2., 1., 3., 2., 3., 1., 1., 2.,
+ 1., 2., 7., 3., 1., 4., 2., 1., 2., 2., 4., 1.])
+
+**Negative Binomial Random Variates**
+
+To generate negative binomial random variates, call the negbin() funtion. By default.
+negbin() will generate values with a probability of 0.5 and 1 trial:
+
+> rv.negbin()
+>
+> array([1.])
+
+To generate 25 negbin values with a probability of 0.42 and 10 trials:
+
+> rv.negbin(t=10, p=0.42, n=25)
+>
+> array([35., 21., 30., 26., 24., 24., 20., 28., 21., 22., 29., 18., 22.,
+ 26., 19., 19., 22., 22., 21., 25., 25., 26., 22., 27., 24.])
+
+**Chi-Squared Random Variates**
+
+Chi-Squared random values can be generated by calling the chisq() method.
+By default, chisq() generates values with df=1:
+
+> rv.chisq()
+>
+> array([0.02609475])
+
+To generated chi-squared values with different degrees of freedom, set df=X where
+X is the degrees of freedom:
+
+> rv.chisq(df=3, n=25)
+>
+> array([4.03013192, 2.1255032 , 1.41496674, 2.49301795, 4.34632967,
+ 7.07483573, 8.80603908, 0.40890643, 1.02559277, 0.3263966 ,
+ 1.16851057, 9.41171507, 0.10331964, 0.4620984 , 1.30332824,
+ 2.86123596, 6.30155659, 2.34574672, 6.51270442, 1.8040176 ,
+ 2.73061465, 2.18939106, 0.17322089, 1.95769521, 1.34417982])
+
+**Poisson Random Variates**
+
+By default, the poisson() method will generate poission random values with lam=1:
+
+> rv.poisson()
+>
+> array([18])
+
+To generate possion random variates for different lambda values, set lam=X,
+where X is the new labmda value:
+
+> rv.poisson(lam=3, n=25)
+>
+> array([4, 7, 3, 2, 3, 3, 0, 3, 5, 1, 3, 2, 9, 3, 1, 3, 2, 3, 4, 5, 2, 4,
+ 5, 7, 2])
+
+**Gamma Random Variates**
+
+Gamma random values can be generated by calling the gamma() function. By default,
+gamma() generates values with a shape parameter (k) and scale parameter (theta)
+equal to one:
+
+> rv.gamma()
+>
+> array([0.0496442])
+
+To generate gamma values with different shape and scale parameters set k = shape
+and theta = scale. i.e.) k=3, theta=3
+
+> rv.gamma(k=3, theta=3, n=25)
+>
+> array([ 2.86760705, 8.28296535, 15.61018946, 13.89795502, 28.71023072,
+ 0.98039742, 14.78770565, 8.31682721, 7.12832689, 11.31451427,
+ 14.12970636, 9.03501294, 18.95392932, 8.94168958, 2.80143093,
+ 7.09702805, 1.98142127, 6.69417433, 7.64163982, 12.51436153,
+ 9.84781027, 7.80807741, 6.79817083, 7.22277182, 13.64361073])
+
+**Lognormal Random Variates**
+
+Lognormal values can be generated with the lognormal() function:
+
+> rv.lognormal()
+>
+> array([0.24196649])
+
+To generate lognormal values with different mean and standards deviation, specify
+the mu=X and sd=Y parameters where mu=X is the mean and sd=Y is the
+standard deviation:
+
+> rv.lognormal(mu=5, sd=2, n=10)
+>
+> array([ 8.68926144, 1165.743983 , 542.36799958, 50.00329616,
+ 2518.21870637, 6.20023729, 2.58041108, 83.05661697,
+ 617.74324652, 122.09875036])
+
+**Beta Random Variates**
+
+Beta random values can be generated via the beta() method. The beta() method takes
+two shape parameters - a and b. By default, the a and b parameters are set to 1:
+
+> rv.beta()
+>
+> array([0.01995716])
+
+To generate beta values with different shape parameters, specify different shape
+values as such:
+
+> rv.beta(a = 2, b = 4, n = 25)
+>
+> array([0.05843224, 0.17390187, 0.50358743, 0.50885326, 0.71498465,
+ 0.01966699, 0.53999924, 0.18878303, 0.30052695, 0.66454575,
+ 0.47430718, 0.23385242, 0.69526851, 0.48014572, 0.07415403,
+ 0.22019374, 0.07180719, 0.17131799, 0.19680721, 0.23783813,
+ 0.32510779, 0.29333343, 0.20013351, 0.27709332, 0.51118395])
+
+
+
+# Release History
+
+2021-11-10: More stupid seed fixes
+
+2021-11-10: Erlang fixes
+
+2021-11-08: Beta fixes
+
+2021-11-08: Gamma fixes
+
+2021-11-08: Refactored poisson to correctly handle the situation when a seed is set
+
+2021-11-08: Found a bug in the seed algorithm
+
+2021-11-08: Refactored norm to properly hand seed==0
+
+2021-11-08: Refactored chisq method to work around "funky" seeding issues
+
+2021-11-08: Refactored the negbin method to properly handle the situation when a
+seed is set.
+
+2021-11-08: Refactored the binomial method to properly handle the situation when a
+seed is set.
+
+2021-11-06: Initial creation of pip package
+
+2021-11-06: Added Tausworthe Generator and a uniform generator based off the
+Tausworthe generator.
+
+
+
+%package help
+Summary: Development documents and examples for randvars
+Provides: python3-randvars-doc
+%description help
+# Introduction
+RandomVariates is a library of random variate generation routines.
+The purpose behind this library was purely for educational purposes as
+a way to learn how to generate random variates using such methods as
+inverse transform, convolution, acceptance-rejection and composition
+methods. Additionally, this project was an excuse to get familiar with
+random number generators such as linear congruential generators,
+Tausworthe Generators and Widynski's "Squares: A Fast Counter-Based RNG"
+
+## Pseudo Random Number Generators
+The following pseudo random number (PRN) generators are contained in this project:
+* A basic "desert island" linear congruential (implemented in the uniform function)
+* taus() and tausunif(): A basic Tausworthe PRN generator and a Tausworthe Uniform
+PRN generator
+* squaresrng(): Widynski's "Squares: A Fast Counter-Based RNG"
+https://arxiv.org/pdf/2004.06278.pdf
+
+### Various helper functions to take advantage of the PRN generators
+* randseed(): Helper function to grab a "smaller" PRN from the Widynski squares PRN
+generator
+* generateseed(): Helper function to generate random seeds if the initial seed has
+not been set
+* set_seed() and get_seed(): Functions to get and set the seed.
+* reverse(): Helper function to reverse an integer
+
+## Random Variate Generation Routines
+* uniform(): Routine to generate uniform random variates between a and b.
+Default uniform(a=0, b=1)
+* norm(): Method to generate random normals. Default norm(mu=0, sd=1)
+* exponential(): Generate exponential random variates.
+Default exponential(lam=1)
+* erlang(): Routine to generate Erlang_k(lambda) random variates.
+Default erlang(lam=1, k=1, n=1)
+* weibull(): Method to generate weibull random variates: Default
+weibull(lam=1, beta=1)
+* triangular(): Generate triangular random variates with a-lower, b-mode
+and c-upper Default triangular(a=0, b=1, c=2)
+* Bernoulli(): random variates Default bernoulli(p=0.5)
+* Binomial(): Routine to generate binomial random variates Default binomial(t=1, p=0.5)
+* dicetoss(): Simple/fun method to generate X-sides dice toss. Default is
+a simple 6-sided dicetoss(sides=6)
+* geometric(): Method to generate geometric random variates
+Default geometric(p=0.5)
+* negbin(): Routine to generate discrete random negative binomials
+Default negbin(t=1, p=0.5)
+* chisq(): Generate Chi-squared random variates Default chisq(df=1)
+* poisson(): Method to generate Poisson random variates Default poisson(lam=1)
+* gamma(): Gamma random variates shape parameter k and a scale parameter θ.
+Implementation is based on Marsaglia and Tsang's transformation-rejection method
+of generating gamma random variates
+(https://dl.acm.org/doi/10.1145/358407.358414) Default gamma(k=1.0, theta=1)
+* lognormal(): Generate lognormal random variates Default lognormal(mu=0, sd=1)
+* beta(): Routine to generate beta random variates Default beta(a=1, b=1)
+
+## Limitations
+* Unlike Numpy's random variate generation routines, these are written
+in python. Numpy's random routines are written in C hence are much, much faster.
+* Beta and Gamma distributions only accept a, b, k and theta greater than one.
+Other random variate implementations, such as Numpy can handle values between
+0 and 1.
+* Setting the seed does not affect the Tausworthe and Tausworthe Uniform PRN
+generators
+
+### Distributions not currently implemented
+* Pearson Type V
+* Pearson Type VI
+* Log-Logistic
+* Johnson Bounded and Johnson unbounded
+* Bézier
+
+## Installation
+### Requirements:
+* Python 3.x
+* pip (https://pip.pypa.io/en/stable/installation/)
+
+To install the library, simply run the command:
+* pip install randvars
+
+## Usage
+To use the library, you need to import the library into your python script then
+create an instance of random variates:
+> import randomvariates
+
+> rv = randomvariates.random.RandomVariates()
+
+Alternately you can import random from randomvariates:
+> from randomvariates import random
+
+> rv = random.RandomVariates()
+
+### Seeds
+By default, a seed is not set when an instance or randomvariates is called.
+When a seed is set to None, randomvariates will randomly generate values for the
+various random variate routines. For repeatability, we can set a seed by calling
+the set_seed() method. Once a seed has been set, we can verify by calling the
+get_seed() method.
+
+> from randomvariates import random
+>
+> rv = random.RandomVariates()
+>
+> rv.set_seed(42)
+>
+> rv.get_seed()
+>
+> 42
+
+### Pseudo Random Number Generators
+To call the Widynski Squares PRN we can call the squaresrng() method.
+The squaresrng() method takes a center and key value. By default, the center
+and key are set to 1: squaresrng(ctr=1, key=1)
+> rv.squaresrng(42,21)
+>
+> 22904061750312427071608663841693658494663185320788517623007713567980053732104718807902410691731255108163475339984462249791973853173096390867949739437289512015166556428304384
+
+As of 11-06-2021, the Tausworthe PRN and Tausworthe Uniform PRN generator does
+not take a seed value (See Limitations above)
+To call the Tausworthe generators, simply call rv.taus() and rv.tausunif().
+By default taus() will generate 100 binary PRNs and rv.tausunif() will generate
+a single uniform(0,1):
+
+>rv.taus(n=100)
+>
+> array([0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0,
+ 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1,
+ 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1,
+ 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0,
+ 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0])
+
+> rv.tausunif(n=1)
+>
+>array([0.22627192])
+
+**Linear Congruential Generator (LCG)**
+
+The Uniform PRN generator is based off a "desert island" LCG of the form:
+
+> X_{i} = 16807 X_{i-1} mod(2**32 - 1)
+
+To call the uniform PRN generator simply call:
+> rv.uniform()
+>
+> array([0.0028378])
+
+To generate more than one unif(0,1), call the method with n=X where X is the number
+of unif(0,1)s to generate:
+
+> rv.uniform(n=25)
+>
+> array([0.0028378 , 0.69495865, 0.17008364, 0.59578035, 0.28035944,
+ 0.00113405, 0.05993272, 0.28927888, 0.91019703, 0.68147951,
+ 0.62609725, 0.81650574, 0.01200872, 0.83049583, 0.14336138,
+ 0.4747437 , 0.01741077, 0.62288295, 0.79372406, 0.12022883,
+ 0.68598241, 0.3064384 , 0.31021374, 0.76239295, 0.53823463])
+
+If we want to generate something other than unif(0,1), we can call the function
+with a=X and b=Y where X and Y are the lower and upper bounds of the uniform
+distribution:
+
+> rv.uniform(a=7, b=11, n=25)
+>
+> array([ 7.01135121, 9.77983461, 7.68033457, 9.3831214 , 8.12143777,
+ 7.00453619, 7.23973089, 8.15711553, 10.64078812, 9.72591803,
+ 9.50438901, 10.26602297, 7.04803487, 10.32198331, 7.57344553,
+ 8.89897481, 7.0696431 , 9.4915318 , 10.17489623, 7.48091533,
+ 9.74392966, 8.22575361, 8.24085498, 10.04957178, 9.15293853])
+
+### Distributions
+**Normal Random Variates**
+
+To generate random normal random variates, call the norm() function. By default,
+the norm() function will generate values with mean = 0 and standard deviation = 1.
+
+> rv.norm(n=25)
+>
+> array([-1.33438863, 0.12180611, 0.88656523, 0.50965537, -1.64358406,
+ -0.25778164, 0.57095618, 1.90310886, -0.05967737, -0.34183211,
+ 1.40942348, 0.588753 , -2.00879407, -0.27557057, -0.05367554,
+ 0.36562436, 1.51957859, -0.87597507, 0.27341912, 0.99870143,
+ 0.0563413 , -0.58931763, 0.06256761, 1.34552544, -0.41456673])
+
+To generate normals with other means and standard deviations, simply specify them
+when calling the function:
+
+> rv.norm(mu=42, sd=21, n=25)
+>
+> array([31.09197496, 90.91916642, 10.96438887, 63.22805106, 11.65331438,
+ 42.3934924 , 31.50241102, 57.32494887, 39.63622134, 50.84789244,
+ 29.66813461, 71.59768198, 51.23679519, 29.62926174, 38.93133399,
+ 21.33704934, 44.01056639, 85.43369206, 10.93161744, 35.5352881 ,
+ 47.6567116 , 62.89812129, 35.67247842, 48.76775665, 37.78179072])
+
+**Exponential Random Variates**
+
+By default, the exponential() function will generate a single, lambda=1 random variate.
+
+> rv.exponential()
+>
+> array([1.11685025])
+
+To generate exponentials with different rates (lambda), call the exponential function
+with lam=X, where X is 1/X rate:
+
+> rv.exponential(lam=42, n=25)
+>
+> array([0.02659167, 0.05889761, 0.0237974 , 0.05500891, 0.00990581,
+ 0.00665694, 0.01027128, 0.00311863, 0.00991187, 0.00155661,
+ 0.02532011, 0.00358105, 0.06095103, 0.02608557, 0.03126096,
+ 0.01844892, 0.04179501, 0.00204212, 0.01357267, 0.02956585,
+ 0.05493093, 0.04847486, 0.03083947, 0.03648715, 0.02353137])
+
+**Erlang Random Variates**
+
+Random Erlang variates can be generated by calling the erlang() function. By default,
+the erlang function will generate variates with lambda = 1 and shape (k) = 1:
+
+> rv.erlang()
+>
+> array([0.39646936])
+
+To generate erlangs with different rate and shape parameters, set lam=X and k = Y,
+where X is the lambda rate and Y is the shape:
+
+> rv.erlang(lam=5, k=5, n=25)
+>
+> array([0.39646936, 0.08803646, 0.45897164, 0.10449879, 1.07778402,
+ 1.41096694, 1.04868842, 2.09746919, 1.07729126, 2.76008462,
+ 0.42352393, 1.96869049, 0.08046101, 0.40697774, 0.31337257,
+ 0.61761435, 0.18975684, 2.49867301, 0.8335498 , 0.34090517,
+ 0.10486022, 0.13990266, 0.31996746, 0.24335083, 0.46553741])
+
+**Weibull Random Variates**
+
+To generate values from the Weibull distribution, call the weibull() method with
+lam and beta. By default, lam and beta are set to 1 weibull(self, lam=1, beta=1).
+
+> rv.weibull()
+>
+> array([0.00284184])
+
+To generate weibull values with different lam (shape) and beta (scale), set lam
+and beta as such:
+
+> rv.weibull(lam=3, beta=5, n=25)
+>
+> array([0.10318073, 0.34497802, 0.23822211, 0.32680215, 0.26688172,
+ 0.08587253, 0.19102132, 0.26887509, 0.39745421, 0.3424279 ,
+ 0.33224353, 0.37046057, 0.13781682, 0.37386295, 0.2295085 ,
+ 0.30523775, 0.14852653, 0.33166333, 0.36519926, 0.22099585,
+ 0.34327599, 0.2726182 , 0.2734267 , 0.35840856, 0.31657801])
+
+**Triangular Random Variates**
+
+By default, the randomvariates library will generate Triangular(0,1,2) values from
+a triangular distribution:
+
+> rv.triangular()
+>
+>array([0.07533662])
+
+To generate values from a Triangular distribution with lower bound a, mode b and
+upper bound c, call the triangular() function with a, b, and c set:
+
+> rv.triangular(a=-5, b=0, c=5, n=25)
+>
+> array([-4.6233169 , 1.09461047, -2.08380691, 0.50433737, -1.25594176,
+ -4.76187742, -3.26892052, -1.19685075, 2.88100295, 1.00925764,
+ 0.67621261, 1.97102115, -4.22512206, 2.08877884, -2.32267501,
+ -0.12791778, -4.06697336, 0.65766738, 1.7884899 , -2.54817586,
+ 1.0375665 , -1.08567757, -1.06163902, 1.55321124, 0.19497467])
+
+**Bernoulli Random Variates**
+
+To generate bernoulli(p) random values, call the bernoulli() method with
+probability, p. By default, the bernoulli() method generates bernoulli(0.5) random
+values.
+
+> rv.bernoulli()
+>
+> array([0])
+>
+> rv.bernoulli(n=25)
+>
+>array([0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0,
+ 0, 1, 1])
+
+To generate bernoulli(0.8) random values, set p=0.8:
+
+> rv.bernoulli(p=0.8, n=25)
+>
+> array([0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1,
+ 1, 1, 1])
+
+**Binomial Random Variates**
+
+Binomial(n,p) random values can be generated with the binomial() function.
+By default, the binomial() function generates 1 trial at p=0.5:
+
+> rv.binomial()
+>
+> array([0])
+
+Note: Don't confuse t=trials and n=number of values to generate. To generate 25
+binomials with 10 trials, and probability 0.5, we would specify
+binomial(t=10, p=0.5, n=25):
+
+> rv.binomial(t=10, p=0.5, n=25)
+>
+> array([6, 5, 3, 3, 5, 3, 5, 7, 6, 5, 3, 5, 4, 5, 4, 4, 2, 6, 6, 6, 4, 4,
+ 6, 5, 2])
+
+**Random X-sided Dice Toss**
+
+For the D&D fans, the dicetoss() function allows you to generate an X-sided
+die toss. For example, to generate 10, 20-sided dice tosses, simply call the
+dicetoss() function. By default, dicetoss() defaults to a 6-sided die:
+
+> rv.dicetoss(n=10)
+>
+> array([6., 6., 5., 1., 6., 3., 1., 5., 3., 5.])
+
+To generate 10, 20-sided dice toss, set the side variable to 20:
+
+>rv.dicetoss(sides=20, n=10)
+>
+>
+> array([20., 20., 17., 4., 20., 10., 3., 15., 10., 14.])
+
+**Geometric Random Variates**
+
+To generate geometric random values, use the geometric() function. By default,
+the geometric function is set to a probability of 0.5:
+
+> rv.geometric()
+>
+> array([5.])
+
+To generate geometric values with a different probability, set p equal to the new
+probability:
+
+> rv.geometric(p=0.42, n=25)
+>
+> array([ 7., 12., 4., 1., 6., 2., 1., 3., 2., 3., 1., 1., 2.,
+ 1., 2., 7., 3., 1., 4., 2., 1., 2., 2., 4., 1.])
+
+**Negative Binomial Random Variates**
+
+To generate negative binomial random variates, call the negbin() funtion. By default.
+negbin() will generate values with a probability of 0.5 and 1 trial:
+
+> rv.negbin()
+>
+> array([1.])
+
+To generate 25 negbin values with a probability of 0.42 and 10 trials:
+
+> rv.negbin(t=10, p=0.42, n=25)
+>
+> array([35., 21., 30., 26., 24., 24., 20., 28., 21., 22., 29., 18., 22.,
+ 26., 19., 19., 22., 22., 21., 25., 25., 26., 22., 27., 24.])
+
+**Chi-Squared Random Variates**
+
+Chi-Squared random values can be generated by calling the chisq() method.
+By default, chisq() generates values with df=1:
+
+> rv.chisq()
+>
+> array([0.02609475])
+
+To generated chi-squared values with different degrees of freedom, set df=X where
+X is the degrees of freedom:
+
+> rv.chisq(df=3, n=25)
+>
+> array([4.03013192, 2.1255032 , 1.41496674, 2.49301795, 4.34632967,
+ 7.07483573, 8.80603908, 0.40890643, 1.02559277, 0.3263966 ,
+ 1.16851057, 9.41171507, 0.10331964, 0.4620984 , 1.30332824,
+ 2.86123596, 6.30155659, 2.34574672, 6.51270442, 1.8040176 ,
+ 2.73061465, 2.18939106, 0.17322089, 1.95769521, 1.34417982])
+
+**Poisson Random Variates**
+
+By default, the poisson() method will generate poission random values with lam=1:
+
+> rv.poisson()
+>
+> array([18])
+
+To generate possion random variates for different lambda values, set lam=X,
+where X is the new labmda value:
+
+> rv.poisson(lam=3, n=25)
+>
+> array([4, 7, 3, 2, 3, 3, 0, 3, 5, 1, 3, 2, 9, 3, 1, 3, 2, 3, 4, 5, 2, 4,
+ 5, 7, 2])
+
+**Gamma Random Variates**
+
+Gamma random values can be generated by calling the gamma() function. By default,
+gamma() generates values with a shape parameter (k) and scale parameter (theta)
+equal to one:
+
+> rv.gamma()
+>
+> array([0.0496442])
+
+To generate gamma values with different shape and scale parameters set k = shape
+and theta = scale. i.e.) k=3, theta=3
+
+> rv.gamma(k=3, theta=3, n=25)
+>
+> array([ 2.86760705, 8.28296535, 15.61018946, 13.89795502, 28.71023072,
+ 0.98039742, 14.78770565, 8.31682721, 7.12832689, 11.31451427,
+ 14.12970636, 9.03501294, 18.95392932, 8.94168958, 2.80143093,
+ 7.09702805, 1.98142127, 6.69417433, 7.64163982, 12.51436153,
+ 9.84781027, 7.80807741, 6.79817083, 7.22277182, 13.64361073])
+
+**Lognormal Random Variates**
+
+Lognormal values can be generated with the lognormal() function:
+
+> rv.lognormal()
+>
+> array([0.24196649])
+
+To generate lognormal values with different mean and standards deviation, specify
+the mu=X and sd=Y parameters where mu=X is the mean and sd=Y is the
+standard deviation:
+
+> rv.lognormal(mu=5, sd=2, n=10)
+>
+> array([ 8.68926144, 1165.743983 , 542.36799958, 50.00329616,
+ 2518.21870637, 6.20023729, 2.58041108, 83.05661697,
+ 617.74324652, 122.09875036])
+
+**Beta Random Variates**
+
+Beta random values can be generated via the beta() method. The beta() method takes
+two shape parameters - a and b. By default, the a and b parameters are set to 1:
+
+> rv.beta()
+>
+> array([0.01995716])
+
+To generate beta values with different shape parameters, specify different shape
+values as such:
+
+> rv.beta(a = 2, b = 4, n = 25)
+>
+> array([0.05843224, 0.17390187, 0.50358743, 0.50885326, 0.71498465,
+ 0.01966699, 0.53999924, 0.18878303, 0.30052695, 0.66454575,
+ 0.47430718, 0.23385242, 0.69526851, 0.48014572, 0.07415403,
+ 0.22019374, 0.07180719, 0.17131799, 0.19680721, 0.23783813,
+ 0.32510779, 0.29333343, 0.20013351, 0.27709332, 0.51118395])
+
+
+
+# Release History
+
+2021-11-10: More stupid seed fixes
+
+2021-11-10: Erlang fixes
+
+2021-11-08: Beta fixes
+
+2021-11-08: Gamma fixes
+
+2021-11-08: Refactored poisson to correctly handle the situation when a seed is set
+
+2021-11-08: Found a bug in the seed algorithm
+
+2021-11-08: Refactored norm to properly hand seed==0
+
+2021-11-08: Refactored chisq method to work around "funky" seeding issues
+
+2021-11-08: Refactored the negbin method to properly handle the situation when a
+seed is set.
+
+2021-11-08: Refactored the binomial method to properly handle the situation when a
+seed is set.
+
+2021-11-06: Initial creation of pip package
+
+2021-11-06: Added Tausworthe Generator and a uniform generator based off the
+Tausworthe generator.
+
+
+
+%prep
+%autosetup -n randvars-0.0.17
+
+%build
+%py3_build
+
+%install
+%py3_install
+install -d -m755 %{buildroot}/%{_pkgdocdir}
+if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
+if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
+if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
+if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
+pushd %{buildroot}
+if [ -d usr/lib ]; then
+ find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/lib64 ]; then
+ find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/bin ]; then
+ find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/sbin ]; then
+ find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+touch doclist.lst
+if [ -d usr/share/man ]; then
+ find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
+fi
+popd
+mv %{buildroot}/filelist.lst .
+mv %{buildroot}/doclist.lst .
+
+%files -n python3-randvars -f filelist.lst
+%dir %{python3_sitelib}/*
+
+%files help -f doclist.lst
+%{_docdir}/*
+
+%changelog
+* Fri May 05 2023 Python_Bot <Python_Bot@openeuler.org> - 0.0.17-1
+- Package Spec generated
diff --git a/sources b/sources
new file mode 100644
index 0000000..c8a3d23
--- /dev/null
+++ b/sources
@@ -0,0 +1 @@
+925d832342e939d94a13a072b0483957 randvars-0.0.17.tar.gz