diff options
author | CoprDistGit <infra@openeuler.org> | 2023-05-05 06:20:58 +0000 |
---|---|---|
committer | CoprDistGit <infra@openeuler.org> | 2023-05-05 06:20:58 +0000 |
commit | a8b3a2fd62c4679458c0719e277515938948f886 (patch) | |
tree | 5481e4b3ac30efcbb41c9dc80cc3424039f9dbef | |
parent | 63154c3aee65f31c694c854b4531dbb51ff8a881 (diff) |
automatic import of python-razdelopeneuler20.03
-rw-r--r-- | .gitignore | 1 | ||||
-rw-r--r-- | python-razdel.spec | 1107 | ||||
-rw-r--r-- | sources | 1 |
3 files changed, 1109 insertions, 0 deletions
@@ -0,0 +1 @@ +/razdel-0.5.0.tar.gz diff --git a/python-razdel.spec b/python-razdel.spec new file mode 100644 index 0000000..f01264c --- /dev/null +++ b/python-razdel.spec @@ -0,0 +1,1107 @@ +%global _empty_manifest_terminate_build 0 +Name: python-razdel +Version: 0.5.0 +Release: 1 +Summary: Splits russian text into tokens, sentences, section. Rule-based +License: MIT +URL: https://github.com/natasha/razdel +Source0: https://mirrors.nju.edu.cn/pypi/web/packages/70/ea/0151ae55bd26699487e668a865ef43e49409025c7464569beffe1a5789f0/razdel-0.5.0.tar.gz +BuildArch: noarch + + +%description +<img src="https://github.com/natasha/natasha-logos/blob/master/razdel.svg"> + + [](https://codecov.io/gh/natasha/razdel) + +`razdel` — rule-based system for Russian sentence and word tokenization.. + +## Usage + +```python +>>> from razdel import tokenize + +>>> tokens = list(tokenize('Кружка-термос на 0.5л (50/64 см³, 516;...)')) +>>> tokens +[Substring(0, 13, 'Кружка-термос'), + Substring(14, 16, 'на'), + Substring(17, 20, '0.5'), + Substring(20, 21, 'л'), + Substring(22, 23, '(') + ...] + +>>> [_.text for _ in tokens] +['Кружка-термос', 'на', '0.5', 'л', '(', '50/64', 'см³', ',', '516', ';', '...', ')'] +``` + +```python +>>> from razdel import sentenize + +>>> text = ''' +... - "Так в чем же дело?" - "Не ра-ду-ют". +... И т. д. и т. п. В общем, вся газета +... ''' + +>>> list(sentenize(text)) +[Substring(1, 23, '- "Так в чем же дело?"'), + Substring(24, 40, '- "Не ра-ду-ют".'), + Substring(41, 56, 'И т. д. и т. п.'), + Substring(57, 76, 'В общем, вся газета')] +``` + +## Installation + +`razdel` supports Python 3.5+ and PyPy 3. + +```bash +$ pip install razdel +``` + +## Quality, performance +<a name="evalualtion"></a> + +Unfortunately, there is no single correct way to split text into sentences and tokens. For example, one may split `«Как же так?! Захар...» — воскликнут Пронин.` into three sentences `["«Как же так?!", "Захар...»", "— воскликнут Пронин."]` while `razdel` splits it into two `["«Как же так?!", "Захар...» — воскликнут Пронин."]`. What would be the correct way to tokenizer `т.е.`? One may split in into `т.|е.`, `razdel` splits into `т|.|е|.`. + +`razdel` tries to mimic segmentation of these 4 datasets : <a href="https://github.com/natasha/corus#load_ud_syntag">SynTagRus</a>, <a href="https://github.com/natasha/corus#load_morphoru_corpora">OpenCorpora</a>, <a href="https://github.com/natasha/corus#load_morphoru_gicrya">GICRYA</a> and <a href="https://github.com/natasha/corus#load_morphoru_rnc">RNC</a>. These datasets mainly consist of news and fiction. `razdel` rules are optimized for these kinds of texts. Library may perform worse on other domains like social media, scientific articles, legal documents. + +We measure absolute number of errors. There are a lot of trivial cases in the tokenization task. For example, text `чуть-чуть?!` is not non-trivial, one may split it into `чуть|-|чуть|?|!` while the correct tokenization is `чуть-чуть|?!`, such examples are rare. Vast majority of cases are trivial, for example text `в 5 часов ...` is correctly tokenized even via Python native `str.split` into `в| |5| |часов| |...`. Due to the large number of trivial case overall quality of all segmenators is high, it is hard to compare differentiate between for examlpe 99.33%, 99.95% and 99.88%, so we report the absolute number of errors. + +`errors` — number of errors. For example, consider etalon segmentation is `что-то|?`, prediction is `что|-|то?`, then the number of errors is 3: 1 for missing split `то?` + 2 for extra splits `что|-|то`. + +`time` — total seconds taken. + +`spacy_tokenize`, `aatimofeev` and others a defined in <a href="https://github.com/natasha/naeval/blob/master/naeval/segment/models.py">naeval/segment/models.py</a>. Tables are computed in <a href="https://github.com/natasha/naeval/blob/master/scripts/segment/main.ipynb">segment/main.ipynb</a>. + +### Tokens + +<!--- token ---> +<table border="0" class="dataframe"> + <thead> + <tr> + <th></th> + <th colspan="2" halign="left">corpora</th> + <th colspan="2" halign="left">syntag</th> + <th colspan="2" halign="left">gicrya</th> + <th colspan="2" halign="left">rnc</th> + </tr> + <tr> + <th></th> + <th>errors</th> + <th>time</th> + <th>errors</th> + <th>time</th> + <th>errors</th> + <th>time</th> + <th>errors</th> + <th>time</th> + </tr> + </thead> + <tbody> + <tr> + <th>re.findall(\w+|\d+|\p+)</th> + <td>4161</td> + <td>0.5</td> + <td>2660</td> + <td>0.5</td> + <td>2277</td> + <td>0.4</td> + <td>7606</td> + <td>0.4</td> + </tr> + <tr> + <th>spacy</th> + <td>4388</td> + <td>6.2</td> + <td>2103</td> + <td>5.8</td> + <td><b>1740</b></td> + <td>4.1</td> + <td>4057</td> + <td>3.9</td> + </tr> + <tr> + <th>nltk.word_tokenize</th> + <td>14245</td> + <td>3.4</td> + <td>60893</td> + <td>3.3</td> + <td>13496</td> + <td>2.7</td> + <td>41485</td> + <td>2.9</td> + </tr> + <tr> + <th>mystem</th> + <td>4514</td> + <td>5.0</td> + <td>3153</td> + <td>4.7</td> + <td>2497</td> + <td>3.7</td> + <td><b>2028</b></td> + <td>3.9</td> + </tr> + <tr> + <th>mosestokenizer</th> + <td><b>1886</b></td> + <td><b>2.1</b></td> + <td><b>1330</b></td> + <td><b>1.9</b></td> + <td>1796</td> + <td><b>1.6</b></td> + <td><b>2123</b></td> + <td><b>1.7</b></td> + </tr> + <tr> + <th>segtok.word_tokenize</th> + <td>2772</td> + <td><b>2.3</b></td> + <td><b>1288</b></td> + <td><b>2.3</b></td> + <td>1759</td> + <td><b>1.8</b></td> + <td><b>1229</b></td> + <td><b>1.8</b></td> + </tr> + <tr> + <th>aatimofeev/spacy_russian_tokenizer</th> + <td>2930</td> + <td>48.7</td> + <td><b>719</b></td> + <td>51.1</td> + <td><b>678</b></td> + <td>39.5</td> + <td>2681</td> + <td>52.2</td> + </tr> + <tr> + <th>koziev/rutokenizer</th> + <td><b>2627</b></td> + <td><b>1.1</b></td> + <td>1386</td> + <td><b>1.0</b></td> + <td>2893</td> + <td><b>0.8</b></td> + <td>9411</td> + <td><b>0.9</b></td> + </tr> + <tr> + <th>razdel.tokenize</th> + <td><b>1510</b></td> + <td>2.9</td> + <td>1483</td> + <td>2.8</td> + <td><b>322</b></td> + <td>2.0</td> + <td>2124</td> + <td>2.2</td> + </tr> + </tbody> +</table> +<!--- token ---> + +### Sentencies + +<!--- sent ---> +<table border="0" class="dataframe"> + <thead> + <tr> + <th></th> + <th colspan="2" halign="left">corpora</th> + <th colspan="2" halign="left">syntag</th> + <th colspan="2" halign="left">gicrya</th> + <th colspan="2" halign="left">rnc</th> + </tr> + <tr> + <th></th> + <th>errors</th> + <th>time</th> + <th>errors</th> + <th>time</th> + <th>errors</th> + <th>time</th> + <th>errors</th> + <th>time</th> + </tr> + </thead> + <tbody> + <tr> + <th>re.split([.?!…])</th> + <td>20456</td> + <td>0.9</td> + <td>6576</td> + <td>0.6</td> + <td>10084</td> + <td>0.7</td> + <td>23356</td> + <td>1.0</td> + </tr> + <tr> + <th>segtok.split_single</th> + <td>19008</td> + <td>17.8</td> + <td>4422</td> + <td>13.4</td> + <td>159738</td> + <td><b>1.1</b></td> + <td>164218</td> + <td><b>2.8</b></td> + </tr> + <tr> + <th>mosestokenizer</th> + <td>41666</td> + <td><b>8.9</b></td> + <td>22082</td> + <td><b>5.7</b></td> + <td>12663</td> + <td>6.4</td> + <td>50560</td> + <td><b>7.4</b></td> + </tr> + <tr> + <th>nltk.sent_tokenize</th> + <td><b>16420</b></td> + <td><b>10.1</b></td> + <td><b>4350</b></td> + <td><b>5.3</b></td> + <td><b>7074</b></td> + <td><b>5.6</b></td> + <td><b>32534</b></td> + <td>8.9</td> + </tr> + <tr> + <th>deeppavlov/rusenttokenize</th> + <td><b>10192</b></td> + <td>10.9</td> + <td><b>1210</b></td> + <td>7.9</td> + <td><b>8910</b></td> + <td>6.8</td> + <td><b>21410</b></td> + <td><b>7.0</b></td> + </tr> + <tr> + <th>razdel.sentenize</th> + <td><b>9274</b></td> + <td><b>6.1</b></td> + <td><b>824</b></td> + <td><b>3.9</b></td> + <td><b>11414</b></td> + <td><b>4.5</b></td> + <td><b>10594</b></td> + <td>7.5</td> + </tr> + </tbody> +</table> +<!--- sent ---> + +## Support + +- Chat — https://telegram.me/natural_language_processing +- Issues — https://github.com/natasha/razdel/issues + +## Development + +Test: + +```bash +pip install -e . +pip install -r requirements/ci.txt +make test +make int # 2000 integration tests +``` + +Package: + +```bash +make version +git push +git push --tags + +make clean wheel upload +``` + +`mystem` errors on `syntag`: + +```bash +# see naeval/data +cat syntag_tokens.txt | razdel-ctl sample 1000 | razdel-ctl gen | razdel-ctl diff --show moses_tokenize | less +``` + +Non-trivial token tests: + +```bash +pv data/*_tokens.txt | razdel-ctl gen --recall | razdel-ctl diff space_tokenize > tests.txt +pv data/*_tokens.txt | razdel-ctl gen --precision | razdel-ctl diff re_tokenize >> tests.txt +``` + +Update integration tests: + +```bash +cd razdel/tests/data/ +pv sents.txt | razdel-ctl up sentenize > t; mv t sents.txt +``` + +`razdel` and `moses` diff: + +```bash +cat data/*_tokens.txt | razdel-ctl sample 1000 | razdel-ctl gen | razdel-ctl up tokenize | razdel-ctl diff moses_tokenize | less +``` + +`razdel` performance: + +```bash +cat data/*_tokens.txt | razdel-ctl sample 10000 | pv -l | razdel-ctl gen | razdel-ctl diff tokenize | wc -l +``` + + + + +%package -n python3-razdel +Summary: Splits russian text into tokens, sentences, section. Rule-based +Provides: python-razdel +BuildRequires: python3-devel +BuildRequires: python3-setuptools +BuildRequires: python3-pip +%description -n python3-razdel +<img src="https://github.com/natasha/natasha-logos/blob/master/razdel.svg"> + + [](https://codecov.io/gh/natasha/razdel) + +`razdel` — rule-based system for Russian sentence and word tokenization.. + +## Usage + +```python +>>> from razdel import tokenize + +>>> tokens = list(tokenize('Кружка-термос на 0.5л (50/64 см³, 516;...)')) +>>> tokens +[Substring(0, 13, 'Кружка-термос'), + Substring(14, 16, 'на'), + Substring(17, 20, '0.5'), + Substring(20, 21, 'л'), + Substring(22, 23, '(') + ...] + +>>> [_.text for _ in tokens] +['Кружка-термос', 'на', '0.5', 'л', '(', '50/64', 'см³', ',', '516', ';', '...', ')'] +``` + +```python +>>> from razdel import sentenize + +>>> text = ''' +... - "Так в чем же дело?" - "Не ра-ду-ют". +... И т. д. и т. п. В общем, вся газета +... ''' + +>>> list(sentenize(text)) +[Substring(1, 23, '- "Так в чем же дело?"'), + Substring(24, 40, '- "Не ра-ду-ют".'), + Substring(41, 56, 'И т. д. и т. п.'), + Substring(57, 76, 'В общем, вся газета')] +``` + +## Installation + +`razdel` supports Python 3.5+ and PyPy 3. + +```bash +$ pip install razdel +``` + +## Quality, performance +<a name="evalualtion"></a> + +Unfortunately, there is no single correct way to split text into sentences and tokens. For example, one may split `«Как же так?! Захар...» — воскликнут Пронин.` into three sentences `["«Как же так?!", "Захар...»", "— воскликнут Пронин."]` while `razdel` splits it into two `["«Как же так?!", "Захар...» — воскликнут Пронин."]`. What would be the correct way to tokenizer `т.е.`? One may split in into `т.|е.`, `razdel` splits into `т|.|е|.`. + +`razdel` tries to mimic segmentation of these 4 datasets : <a href="https://github.com/natasha/corus#load_ud_syntag">SynTagRus</a>, <a href="https://github.com/natasha/corus#load_morphoru_corpora">OpenCorpora</a>, <a href="https://github.com/natasha/corus#load_morphoru_gicrya">GICRYA</a> and <a href="https://github.com/natasha/corus#load_morphoru_rnc">RNC</a>. These datasets mainly consist of news and fiction. `razdel` rules are optimized for these kinds of texts. Library may perform worse on other domains like social media, scientific articles, legal documents. + +We measure absolute number of errors. There are a lot of trivial cases in the tokenization task. For example, text `чуть-чуть?!` is not non-trivial, one may split it into `чуть|-|чуть|?|!` while the correct tokenization is `чуть-чуть|?!`, such examples are rare. Vast majority of cases are trivial, for example text `в 5 часов ...` is correctly tokenized even via Python native `str.split` into `в| |5| |часов| |...`. Due to the large number of trivial case overall quality of all segmenators is high, it is hard to compare differentiate between for examlpe 99.33%, 99.95% and 99.88%, so we report the absolute number of errors. + +`errors` — number of errors. For example, consider etalon segmentation is `что-то|?`, prediction is `что|-|то?`, then the number of errors is 3: 1 for missing split `то?` + 2 for extra splits `что|-|то`. + +`time` — total seconds taken. + +`spacy_tokenize`, `aatimofeev` and others a defined in <a href="https://github.com/natasha/naeval/blob/master/naeval/segment/models.py">naeval/segment/models.py</a>. Tables are computed in <a href="https://github.com/natasha/naeval/blob/master/scripts/segment/main.ipynb">segment/main.ipynb</a>. + +### Tokens + +<!--- token ---> +<table border="0" class="dataframe"> + <thead> + <tr> + <th></th> + <th colspan="2" halign="left">corpora</th> + <th colspan="2" halign="left">syntag</th> + <th colspan="2" halign="left">gicrya</th> + <th colspan="2" halign="left">rnc</th> + </tr> + <tr> + <th></th> + <th>errors</th> + <th>time</th> + <th>errors</th> + <th>time</th> + <th>errors</th> + <th>time</th> + <th>errors</th> + <th>time</th> + </tr> + </thead> + <tbody> + <tr> + <th>re.findall(\w+|\d+|\p+)</th> + <td>4161</td> + <td>0.5</td> + <td>2660</td> + <td>0.5</td> + <td>2277</td> + <td>0.4</td> + <td>7606</td> + <td>0.4</td> + </tr> + <tr> + <th>spacy</th> + <td>4388</td> + <td>6.2</td> + <td>2103</td> + <td>5.8</td> + <td><b>1740</b></td> + <td>4.1</td> + <td>4057</td> + <td>3.9</td> + </tr> + <tr> + <th>nltk.word_tokenize</th> + <td>14245</td> + <td>3.4</td> + <td>60893</td> + <td>3.3</td> + <td>13496</td> + <td>2.7</td> + <td>41485</td> + <td>2.9</td> + </tr> + <tr> + <th>mystem</th> + <td>4514</td> + <td>5.0</td> + <td>3153</td> + <td>4.7</td> + <td>2497</td> + <td>3.7</td> + <td><b>2028</b></td> + <td>3.9</td> + </tr> + <tr> + <th>mosestokenizer</th> + <td><b>1886</b></td> + <td><b>2.1</b></td> + <td><b>1330</b></td> + <td><b>1.9</b></td> + <td>1796</td> + <td><b>1.6</b></td> + <td><b>2123</b></td> + <td><b>1.7</b></td> + </tr> + <tr> + <th>segtok.word_tokenize</th> + <td>2772</td> + <td><b>2.3</b></td> + <td><b>1288</b></td> + <td><b>2.3</b></td> + <td>1759</td> + <td><b>1.8</b></td> + <td><b>1229</b></td> + <td><b>1.8</b></td> + </tr> + <tr> + <th>aatimofeev/spacy_russian_tokenizer</th> + <td>2930</td> + <td>48.7</td> + <td><b>719</b></td> + <td>51.1</td> + <td><b>678</b></td> + <td>39.5</td> + <td>2681</td> + <td>52.2</td> + </tr> + <tr> + <th>koziev/rutokenizer</th> + <td><b>2627</b></td> + <td><b>1.1</b></td> + <td>1386</td> + <td><b>1.0</b></td> + <td>2893</td> + <td><b>0.8</b></td> + <td>9411</td> + <td><b>0.9</b></td> + </tr> + <tr> + <th>razdel.tokenize</th> + <td><b>1510</b></td> + <td>2.9</td> + <td>1483</td> + <td>2.8</td> + <td><b>322</b></td> + <td>2.0</td> + <td>2124</td> + <td>2.2</td> + </tr> + </tbody> +</table> +<!--- token ---> + +### Sentencies + +<!--- sent ---> +<table border="0" class="dataframe"> + <thead> + <tr> + <th></th> + <th colspan="2" halign="left">corpora</th> + <th colspan="2" halign="left">syntag</th> + <th colspan="2" halign="left">gicrya</th> + <th colspan="2" halign="left">rnc</th> + </tr> + <tr> + <th></th> + <th>errors</th> + <th>time</th> + <th>errors</th> + <th>time</th> + <th>errors</th> + <th>time</th> + <th>errors</th> + <th>time</th> + </tr> + </thead> + <tbody> + <tr> + <th>re.split([.?!…])</th> + <td>20456</td> + <td>0.9</td> + <td>6576</td> + <td>0.6</td> + <td>10084</td> + <td>0.7</td> + <td>23356</td> + <td>1.0</td> + </tr> + <tr> + <th>segtok.split_single</th> + <td>19008</td> + <td>17.8</td> + <td>4422</td> + <td>13.4</td> + <td>159738</td> + <td><b>1.1</b></td> + <td>164218</td> + <td><b>2.8</b></td> + </tr> + <tr> + <th>mosestokenizer</th> + <td>41666</td> + <td><b>8.9</b></td> + <td>22082</td> + <td><b>5.7</b></td> + <td>12663</td> + <td>6.4</td> + <td>50560</td> + <td><b>7.4</b></td> + </tr> + <tr> + <th>nltk.sent_tokenize</th> + <td><b>16420</b></td> + <td><b>10.1</b></td> + <td><b>4350</b></td> + <td><b>5.3</b></td> + <td><b>7074</b></td> + <td><b>5.6</b></td> + <td><b>32534</b></td> + <td>8.9</td> + </tr> + <tr> + <th>deeppavlov/rusenttokenize</th> + <td><b>10192</b></td> + <td>10.9</td> + <td><b>1210</b></td> + <td>7.9</td> + <td><b>8910</b></td> + <td>6.8</td> + <td><b>21410</b></td> + <td><b>7.0</b></td> + </tr> + <tr> + <th>razdel.sentenize</th> + <td><b>9274</b></td> + <td><b>6.1</b></td> + <td><b>824</b></td> + <td><b>3.9</b></td> + <td><b>11414</b></td> + <td><b>4.5</b></td> + <td><b>10594</b></td> + <td>7.5</td> + </tr> + </tbody> +</table> +<!--- sent ---> + +## Support + +- Chat — https://telegram.me/natural_language_processing +- Issues — https://github.com/natasha/razdel/issues + +## Development + +Test: + +```bash +pip install -e . +pip install -r requirements/ci.txt +make test +make int # 2000 integration tests +``` + +Package: + +```bash +make version +git push +git push --tags + +make clean wheel upload +``` + +`mystem` errors on `syntag`: + +```bash +# see naeval/data +cat syntag_tokens.txt | razdel-ctl sample 1000 | razdel-ctl gen | razdel-ctl diff --show moses_tokenize | less +``` + +Non-trivial token tests: + +```bash +pv data/*_tokens.txt | razdel-ctl gen --recall | razdel-ctl diff space_tokenize > tests.txt +pv data/*_tokens.txt | razdel-ctl gen --precision | razdel-ctl diff re_tokenize >> tests.txt +``` + +Update integration tests: + +```bash +cd razdel/tests/data/ +pv sents.txt | razdel-ctl up sentenize > t; mv t sents.txt +``` + +`razdel` and `moses` diff: + +```bash +cat data/*_tokens.txt | razdel-ctl sample 1000 | razdel-ctl gen | razdel-ctl up tokenize | razdel-ctl diff moses_tokenize | less +``` + +`razdel` performance: + +```bash +cat data/*_tokens.txt | razdel-ctl sample 10000 | pv -l | razdel-ctl gen | razdel-ctl diff tokenize | wc -l +``` + + + + +%package help +Summary: Development documents and examples for razdel +Provides: python3-razdel-doc +%description help +<img src="https://github.com/natasha/natasha-logos/blob/master/razdel.svg"> + + [](https://codecov.io/gh/natasha/razdel) + +`razdel` — rule-based system for Russian sentence and word tokenization.. + +## Usage + +```python +>>> from razdel import tokenize + +>>> tokens = list(tokenize('Кружка-термос на 0.5л (50/64 см³, 516;...)')) +>>> tokens +[Substring(0, 13, 'Кружка-термос'), + Substring(14, 16, 'на'), + Substring(17, 20, '0.5'), + Substring(20, 21, 'л'), + Substring(22, 23, '(') + ...] + +>>> [_.text for _ in tokens] +['Кружка-термос', 'на', '0.5', 'л', '(', '50/64', 'см³', ',', '516', ';', '...', ')'] +``` + +```python +>>> from razdel import sentenize + +>>> text = ''' +... - "Так в чем же дело?" - "Не ра-ду-ют". +... И т. д. и т. п. В общем, вся газета +... ''' + +>>> list(sentenize(text)) +[Substring(1, 23, '- "Так в чем же дело?"'), + Substring(24, 40, '- "Не ра-ду-ют".'), + Substring(41, 56, 'И т. д. и т. п.'), + Substring(57, 76, 'В общем, вся газета')] +``` + +## Installation + +`razdel` supports Python 3.5+ and PyPy 3. + +```bash +$ pip install razdel +``` + +## Quality, performance +<a name="evalualtion"></a> + +Unfortunately, there is no single correct way to split text into sentences and tokens. For example, one may split `«Как же так?! Захар...» — воскликнут Пронин.` into three sentences `["«Как же так?!", "Захар...»", "— воскликнут Пронин."]` while `razdel` splits it into two `["«Как же так?!", "Захар...» — воскликнут Пронин."]`. What would be the correct way to tokenizer `т.е.`? One may split in into `т.|е.`, `razdel` splits into `т|.|е|.`. + +`razdel` tries to mimic segmentation of these 4 datasets : <a href="https://github.com/natasha/corus#load_ud_syntag">SynTagRus</a>, <a href="https://github.com/natasha/corus#load_morphoru_corpora">OpenCorpora</a>, <a href="https://github.com/natasha/corus#load_morphoru_gicrya">GICRYA</a> and <a href="https://github.com/natasha/corus#load_morphoru_rnc">RNC</a>. These datasets mainly consist of news and fiction. `razdel` rules are optimized for these kinds of texts. Library may perform worse on other domains like social media, scientific articles, legal documents. + +We measure absolute number of errors. There are a lot of trivial cases in the tokenization task. For example, text `чуть-чуть?!` is not non-trivial, one may split it into `чуть|-|чуть|?|!` while the correct tokenization is `чуть-чуть|?!`, such examples are rare. Vast majority of cases are trivial, for example text `в 5 часов ...` is correctly tokenized even via Python native `str.split` into `в| |5| |часов| |...`. Due to the large number of trivial case overall quality of all segmenators is high, it is hard to compare differentiate between for examlpe 99.33%, 99.95% and 99.88%, so we report the absolute number of errors. + +`errors` — number of errors. For example, consider etalon segmentation is `что-то|?`, prediction is `что|-|то?`, then the number of errors is 3: 1 for missing split `то?` + 2 for extra splits `что|-|то`. + +`time` — total seconds taken. + +`spacy_tokenize`, `aatimofeev` and others a defined in <a href="https://github.com/natasha/naeval/blob/master/naeval/segment/models.py">naeval/segment/models.py</a>. Tables are computed in <a href="https://github.com/natasha/naeval/blob/master/scripts/segment/main.ipynb">segment/main.ipynb</a>. + +### Tokens + +<!--- token ---> +<table border="0" class="dataframe"> + <thead> + <tr> + <th></th> + <th colspan="2" halign="left">corpora</th> + <th colspan="2" halign="left">syntag</th> + <th colspan="2" halign="left">gicrya</th> + <th colspan="2" halign="left">rnc</th> + </tr> + <tr> + <th></th> + <th>errors</th> + <th>time</th> + <th>errors</th> + <th>time</th> + <th>errors</th> + <th>time</th> + <th>errors</th> + <th>time</th> + </tr> + </thead> + <tbody> + <tr> + <th>re.findall(\w+|\d+|\p+)</th> + <td>4161</td> + <td>0.5</td> + <td>2660</td> + <td>0.5</td> + <td>2277</td> + <td>0.4</td> + <td>7606</td> + <td>0.4</td> + </tr> + <tr> + <th>spacy</th> + <td>4388</td> + <td>6.2</td> + <td>2103</td> + <td>5.8</td> + <td><b>1740</b></td> + <td>4.1</td> + <td>4057</td> + <td>3.9</td> + </tr> + <tr> + <th>nltk.word_tokenize</th> + <td>14245</td> + <td>3.4</td> + <td>60893</td> + <td>3.3</td> + <td>13496</td> + <td>2.7</td> + <td>41485</td> + <td>2.9</td> + </tr> + <tr> + <th>mystem</th> + <td>4514</td> + <td>5.0</td> + <td>3153</td> + <td>4.7</td> + <td>2497</td> + <td>3.7</td> + <td><b>2028</b></td> + <td>3.9</td> + </tr> + <tr> + <th>mosestokenizer</th> + <td><b>1886</b></td> + <td><b>2.1</b></td> + <td><b>1330</b></td> + <td><b>1.9</b></td> + <td>1796</td> + <td><b>1.6</b></td> + <td><b>2123</b></td> + <td><b>1.7</b></td> + </tr> + <tr> + <th>segtok.word_tokenize</th> + <td>2772</td> + <td><b>2.3</b></td> + <td><b>1288</b></td> + <td><b>2.3</b></td> + <td>1759</td> + <td><b>1.8</b></td> + <td><b>1229</b></td> + <td><b>1.8</b></td> + </tr> + <tr> + <th>aatimofeev/spacy_russian_tokenizer</th> + <td>2930</td> + <td>48.7</td> + <td><b>719</b></td> + <td>51.1</td> + <td><b>678</b></td> + <td>39.5</td> + <td>2681</td> + <td>52.2</td> + </tr> + <tr> + <th>koziev/rutokenizer</th> + <td><b>2627</b></td> + <td><b>1.1</b></td> + <td>1386</td> + <td><b>1.0</b></td> + <td>2893</td> + <td><b>0.8</b></td> + <td>9411</td> + <td><b>0.9</b></td> + </tr> + <tr> + <th>razdel.tokenize</th> + <td><b>1510</b></td> + <td>2.9</td> + <td>1483</td> + <td>2.8</td> + <td><b>322</b></td> + <td>2.0</td> + <td>2124</td> + <td>2.2</td> + </tr> + </tbody> +</table> +<!--- token ---> + +### Sentencies + +<!--- sent ---> +<table border="0" class="dataframe"> + <thead> + <tr> + <th></th> + <th colspan="2" halign="left">corpora</th> + <th colspan="2" halign="left">syntag</th> + <th colspan="2" halign="left">gicrya</th> + <th colspan="2" halign="left">rnc</th> + </tr> + <tr> + <th></th> + <th>errors</th> + <th>time</th> + <th>errors</th> + <th>time</th> + <th>errors</th> + <th>time</th> + <th>errors</th> + <th>time</th> + </tr> + </thead> + <tbody> + <tr> + <th>re.split([.?!…])</th> + <td>20456</td> + <td>0.9</td> + <td>6576</td> + <td>0.6</td> + <td>10084</td> + <td>0.7</td> + <td>23356</td> + <td>1.0</td> + </tr> + <tr> + <th>segtok.split_single</th> + <td>19008</td> + <td>17.8</td> + <td>4422</td> + <td>13.4</td> + <td>159738</td> + <td><b>1.1</b></td> + <td>164218</td> + <td><b>2.8</b></td> + </tr> + <tr> + <th>mosestokenizer</th> + <td>41666</td> + <td><b>8.9</b></td> + <td>22082</td> + <td><b>5.7</b></td> + <td>12663</td> + <td>6.4</td> + <td>50560</td> + <td><b>7.4</b></td> + </tr> + <tr> + <th>nltk.sent_tokenize</th> + <td><b>16420</b></td> + <td><b>10.1</b></td> + <td><b>4350</b></td> + <td><b>5.3</b></td> + <td><b>7074</b></td> + <td><b>5.6</b></td> + <td><b>32534</b></td> + <td>8.9</td> + </tr> + <tr> + <th>deeppavlov/rusenttokenize</th> + <td><b>10192</b></td> + <td>10.9</td> + <td><b>1210</b></td> + <td>7.9</td> + <td><b>8910</b></td> + <td>6.8</td> + <td><b>21410</b></td> + <td><b>7.0</b></td> + </tr> + <tr> + <th>razdel.sentenize</th> + <td><b>9274</b></td> + <td><b>6.1</b></td> + <td><b>824</b></td> + <td><b>3.9</b></td> + <td><b>11414</b></td> + <td><b>4.5</b></td> + <td><b>10594</b></td> + <td>7.5</td> + </tr> + </tbody> +</table> +<!--- sent ---> + +## Support + +- Chat — https://telegram.me/natural_language_processing +- Issues — https://github.com/natasha/razdel/issues + +## Development + +Test: + +```bash +pip install -e . +pip install -r requirements/ci.txt +make test +make int # 2000 integration tests +``` + +Package: + +```bash +make version +git push +git push --tags + +make clean wheel upload +``` + +`mystem` errors on `syntag`: + +```bash +# see naeval/data +cat syntag_tokens.txt | razdel-ctl sample 1000 | razdel-ctl gen | razdel-ctl diff --show moses_tokenize | less +``` + +Non-trivial token tests: + +```bash +pv data/*_tokens.txt | razdel-ctl gen --recall | razdel-ctl diff space_tokenize > tests.txt +pv data/*_tokens.txt | razdel-ctl gen --precision | razdel-ctl diff re_tokenize >> tests.txt +``` + +Update integration tests: + +```bash +cd razdel/tests/data/ +pv sents.txt | razdel-ctl up sentenize > t; mv t sents.txt +``` + +`razdel` and `moses` diff: + +```bash +cat data/*_tokens.txt | razdel-ctl sample 1000 | razdel-ctl gen | razdel-ctl up tokenize | razdel-ctl diff moses_tokenize | less +``` + +`razdel` performance: + +```bash +cat data/*_tokens.txt | razdel-ctl sample 10000 | pv -l | razdel-ctl gen | razdel-ctl diff tokenize | wc -l +``` + + + + +%prep +%autosetup -n razdel-0.5.0 + +%build +%py3_build + +%install +%py3_install +install -d -m755 %{buildroot}/%{_pkgdocdir} +if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi +if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi +if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi +if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi +pushd %{buildroot} +if [ -d usr/lib ]; then + find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/lib64 ]; then + find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/bin ]; then + find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/sbin ]; then + find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst +fi +touch doclist.lst +if [ -d usr/share/man ]; then + find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst +fi +popd +mv %{buildroot}/filelist.lst . +mv %{buildroot}/doclist.lst . + +%files -n python3-razdel -f filelist.lst +%dir %{python3_sitelib}/* + +%files help -f doclist.lst +%{_docdir}/* + +%changelog +* Fri May 05 2023 Python_Bot <Python_Bot@openeuler.org> - 0.5.0-1 +- Package Spec generated @@ -0,0 +1 @@ +638852a3b703aaa57927e1e40a1a74dc razdel-0.5.0.tar.gz |