summaryrefslogtreecommitdiff
path: root/python-recordlinkage.spec
blob: 487d68cad179b956d0cfee4e34bbe506ce43f00d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
%global _empty_manifest_terminate_build 0
Name:		python-recordlinkage
Version:	0.15
Release:	1
Summary:	A record linkage toolkit for linking and deduplication
License:	BSD-3-Clause
URL:		https://github.com/J535D165/recordlinkage
Source0:	https://mirrors.nju.edu.cn/pypi/web/packages/75/7c/8deed2c61e0b77f856d785f022385871c6e25777119186071b6648f864d0/recordlinkage-0.15.tar.gz
BuildArch:	noarch

Requires:	python3-jellyfish
Requires:	python3-numpy
Requires:	python3-pandas
Requires:	python3-scipy
Requires:	python3-scikit-learn
Requires:	python3-joblib
Requires:	python3-networkx
Requires:	python3-bottleneck
Requires:	python3-numexpr
Requires:	python3-pytest
Requires:	python3-networkx
Requires:	python3-bottleneck
Requires:	python3-numexpr

%description
<div align="center">
  <img src="https://raw.githubusercontent.com/J535D165/recordlinkage/master/docs/images/recordlinkage-banner-transparent.svg"><br>
</div>

# RecordLinkage: powerful and modular Python record linkage toolkit

[![Pypi Version](https://badge.fury.io/py/recordlinkage.svg)](https://pypi.python.org/pypi/recordlinkage/)
[![Github Actions CI Status](https://github.com/J535D165/recordlinkage/workflows/tests/badge.svg?branch=master)](https://github.com/J535D165/recordlinkage/actions)
[![Code Coverage](https://codecov.io/gh/J535D165/recordlinkage/branch/master/graph/badge.svg)](https://codecov.io/gh/J535D165/recordlinkage)
[![Documentation Status](https://readthedocs.org/projects/recordlinkage/badge/?version=latest)](https://recordlinkage.readthedocs.io/en/latest/?badge=latest)
[![Zenodo DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.3559042.svg)](https://doi.org/10.5281/zenodo.3559042)

**RecordLinkage** is a powerful and modular record linkage toolkit to
link records in or between data sources. The toolkit provides most of
the tools needed for record linkage and deduplication. The package
contains indexing methods, functions to compare records and classifiers.
The package is developed for research and the linking of small or medium
sized files.

This project is inspired by the [Freely Extensible Biomedical Record
Linkage (FEBRL)](https://sourceforge.net/projects/febrl/) project, which
is a great project. In contrast with FEBRL, the recordlinkage project
uses [pandas](http://pandas.pydata.org/) and
[numpy](http://www.numpy.org/) for data handling and computations. The
use of *pandas*, a flexible and powerful data analysis and manipulation
library for Python, makes the record linkage process much easier and
faster. The extensive *pandas* library can be used to integrate your
record linkage directly into existing data manipulation projects.

One of the aims of this project is to make an easily extensible record
linkage framework. It is easy to include your own indexing algorithms,
comparison/similarity measures and classifiers.

## Basic linking example

Import the `recordlinkage` module with all important tools for record
linkage and import the data manipulation framework **pandas**.

``` python
import recordlinkage
import pandas
```

Load your data into pandas DataFrames.

``` python
df_a = pandas.DataFrame(YOUR_FIRST_DATASET)
df_b = pandas.DataFrame(YOUR_SECOND_DATASET)
```

Comparing all record can be computationally intensive. Therefore, we
make set of candidate links with one of the built-in indexing techniques
like **blocking**. In this example, only pairs of records that agree on
the surname are returned.

``` python
indexer = recordlinkage.Index()
indexer.block('surname')
candidate_links = indexer.index(df_a, df_b)
```

For each candidate link, compare the records with one of the comparison
or similarity algorithms in the Compare class.

``` python
c = recordlinkage.Compare()

c.string('name_a', 'name_b', method='jarowinkler', threshold=0.85)
c.exact('sex', 'gender')
c.date('dob', 'date_of_birth')
c.string('str_name', 'streetname', method='damerau_levenshtein', threshold=0.7)
c.exact('place', 'placename')
c.numeric('income', 'income', method='gauss', offset=3, scale=3, missing_value=0.5)

# The comparison vectors
feature_vectors = c.compute(candidate_links, df_a, df_b)
```

Classify the candidate links into matching or distinct pairs based on
their comparison result with one of the [classification
algorithms](https://recordlinkage.readthedocs.io/en/latest/ref-classifiers.html).
The following code classifies candidate pairs with a Logistic Regression
classifier. This (supervised machine learning) algorithm requires
training data.

``` python
logrg = recordlinkage.LogisticRegressionClassifier()
logrg.fit(TRAINING_COMPARISON_VECTORS, TRAINING_PAIRS)

logrg.predict(feature_vectors)
```

The following code shows the classification of candidate pairs with the
Expectation-Conditional Maximisation (ECM) algorithm. This variant of
the Expectation-Maximisation algorithm doesn't require training data
(unsupervised machine learning).

``` python
ecm = recordlinkage.ECMClassifier()
ecm.fit_predict(feature_vectors)
```

## Main Features

The main features of this Python record linkage toolkit are:

-   Clean and standardise data with easy to use tools
-   Make pairs of records with smart indexing methods such as
    **blocking** and **sorted neighbourhood indexing**
-   Compare records with a large number of comparison and similarity
    measures for different types of variables such as strings, numbers
    and dates.
-   Several classifications algorithms, both supervised and unsupervised
    algorithms.
-   Common record linkage evaluation tools
-   Several built-in datasets.

## Documentation

The most recent documentation and API reference can be found at
[recordlinkage.readthedocs.org](http://recordlinkage.readthedocs.org/en/latest/).
The documentation provides some basic usage examples like
[deduplication](http://recordlinkage.readthedocs.io/en/latest/notebooks/data_deduplication.html)
and
[linking](http://recordlinkage.readthedocs.io/en/latest/notebooks/link_two_dataframes.html)
census data. More examples are coming soon. If you do have interesting
examples to share, let us know.

## Installation

The Python Record linkage Toolkit requires Python 3.6 or higher. Install the
package easily with pip

``` sh
pip install recordlinkage
```

Python 2.7 users can use version \<= 0.13, but it is advised to use
Python \>= 3.5.

The toolkit depends on popular packages like
[Pandas](https://github.com/pydata/pandas),
[Numpy](http://www.numpy.org), [Scipy](https://www.scipy.org/) and,
[Scikit-learn](http://scikit-learn.org/). A complete list of
dependencies can be found in the [installation
manual](https://recordlinkage.readthedocs.io/en/latest/installation.html)
as well as recommended and optional dependencies.

## License

The license for this record linkage tool is BSD-3-Clause.

## Citation

Please cite this package when being used in an academic context. Ensure
that the DOI and version match the installed version. Citatation styles
can be found on the publishers website
[10.5281/zenodo.3559042](https://doi.org/10.5281/zenodo.3559042).

``` text
@software{de_bruin_j_2019_3559043,
  author       = {De Bruin, J},
  title        = {{Python Record Linkage Toolkit: A toolkit for
                   record linkage and duplicate detection in Python}},
  month        = dec,
  year         = 2019,
  publisher    = {Zenodo},
  version      = {v0.14},
  doi          = {10.5281/zenodo.3559043},
  url          = {https://doi.org/10.5281/zenodo.3559043}
}
```

## Need help?

Stuck on your record linkage code or problem? Any other questions? Don't
hestitate to send me an email (<jonathandebruinos@gmail.com>).




%package -n python3-recordlinkage
Summary:	A record linkage toolkit for linking and deduplication
Provides:	python-recordlinkage
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-recordlinkage
<div align="center">
  <img src="https://raw.githubusercontent.com/J535D165/recordlinkage/master/docs/images/recordlinkage-banner-transparent.svg"><br>
</div>

# RecordLinkage: powerful and modular Python record linkage toolkit

[![Pypi Version](https://badge.fury.io/py/recordlinkage.svg)](https://pypi.python.org/pypi/recordlinkage/)
[![Github Actions CI Status](https://github.com/J535D165/recordlinkage/workflows/tests/badge.svg?branch=master)](https://github.com/J535D165/recordlinkage/actions)
[![Code Coverage](https://codecov.io/gh/J535D165/recordlinkage/branch/master/graph/badge.svg)](https://codecov.io/gh/J535D165/recordlinkage)
[![Documentation Status](https://readthedocs.org/projects/recordlinkage/badge/?version=latest)](https://recordlinkage.readthedocs.io/en/latest/?badge=latest)
[![Zenodo DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.3559042.svg)](https://doi.org/10.5281/zenodo.3559042)

**RecordLinkage** is a powerful and modular record linkage toolkit to
link records in or between data sources. The toolkit provides most of
the tools needed for record linkage and deduplication. The package
contains indexing methods, functions to compare records and classifiers.
The package is developed for research and the linking of small or medium
sized files.

This project is inspired by the [Freely Extensible Biomedical Record
Linkage (FEBRL)](https://sourceforge.net/projects/febrl/) project, which
is a great project. In contrast with FEBRL, the recordlinkage project
uses [pandas](http://pandas.pydata.org/) and
[numpy](http://www.numpy.org/) for data handling and computations. The
use of *pandas*, a flexible and powerful data analysis and manipulation
library for Python, makes the record linkage process much easier and
faster. The extensive *pandas* library can be used to integrate your
record linkage directly into existing data manipulation projects.

One of the aims of this project is to make an easily extensible record
linkage framework. It is easy to include your own indexing algorithms,
comparison/similarity measures and classifiers.

## Basic linking example

Import the `recordlinkage` module with all important tools for record
linkage and import the data manipulation framework **pandas**.

``` python
import recordlinkage
import pandas
```

Load your data into pandas DataFrames.

``` python
df_a = pandas.DataFrame(YOUR_FIRST_DATASET)
df_b = pandas.DataFrame(YOUR_SECOND_DATASET)
```

Comparing all record can be computationally intensive. Therefore, we
make set of candidate links with one of the built-in indexing techniques
like **blocking**. In this example, only pairs of records that agree on
the surname are returned.

``` python
indexer = recordlinkage.Index()
indexer.block('surname')
candidate_links = indexer.index(df_a, df_b)
```

For each candidate link, compare the records with one of the comparison
or similarity algorithms in the Compare class.

``` python
c = recordlinkage.Compare()

c.string('name_a', 'name_b', method='jarowinkler', threshold=0.85)
c.exact('sex', 'gender')
c.date('dob', 'date_of_birth')
c.string('str_name', 'streetname', method='damerau_levenshtein', threshold=0.7)
c.exact('place', 'placename')
c.numeric('income', 'income', method='gauss', offset=3, scale=3, missing_value=0.5)

# The comparison vectors
feature_vectors = c.compute(candidate_links, df_a, df_b)
```

Classify the candidate links into matching or distinct pairs based on
their comparison result with one of the [classification
algorithms](https://recordlinkage.readthedocs.io/en/latest/ref-classifiers.html).
The following code classifies candidate pairs with a Logistic Regression
classifier. This (supervised machine learning) algorithm requires
training data.

``` python
logrg = recordlinkage.LogisticRegressionClassifier()
logrg.fit(TRAINING_COMPARISON_VECTORS, TRAINING_PAIRS)

logrg.predict(feature_vectors)
```

The following code shows the classification of candidate pairs with the
Expectation-Conditional Maximisation (ECM) algorithm. This variant of
the Expectation-Maximisation algorithm doesn't require training data
(unsupervised machine learning).

``` python
ecm = recordlinkage.ECMClassifier()
ecm.fit_predict(feature_vectors)
```

## Main Features

The main features of this Python record linkage toolkit are:

-   Clean and standardise data with easy to use tools
-   Make pairs of records with smart indexing methods such as
    **blocking** and **sorted neighbourhood indexing**
-   Compare records with a large number of comparison and similarity
    measures for different types of variables such as strings, numbers
    and dates.
-   Several classifications algorithms, both supervised and unsupervised
    algorithms.
-   Common record linkage evaluation tools
-   Several built-in datasets.

## Documentation

The most recent documentation and API reference can be found at
[recordlinkage.readthedocs.org](http://recordlinkage.readthedocs.org/en/latest/).
The documentation provides some basic usage examples like
[deduplication](http://recordlinkage.readthedocs.io/en/latest/notebooks/data_deduplication.html)
and
[linking](http://recordlinkage.readthedocs.io/en/latest/notebooks/link_two_dataframes.html)
census data. More examples are coming soon. If you do have interesting
examples to share, let us know.

## Installation

The Python Record linkage Toolkit requires Python 3.6 or higher. Install the
package easily with pip

``` sh
pip install recordlinkage
```

Python 2.7 users can use version \<= 0.13, but it is advised to use
Python \>= 3.5.

The toolkit depends on popular packages like
[Pandas](https://github.com/pydata/pandas),
[Numpy](http://www.numpy.org), [Scipy](https://www.scipy.org/) and,
[Scikit-learn](http://scikit-learn.org/). A complete list of
dependencies can be found in the [installation
manual](https://recordlinkage.readthedocs.io/en/latest/installation.html)
as well as recommended and optional dependencies.

## License

The license for this record linkage tool is BSD-3-Clause.

## Citation

Please cite this package when being used in an academic context. Ensure
that the DOI and version match the installed version. Citatation styles
can be found on the publishers website
[10.5281/zenodo.3559042](https://doi.org/10.5281/zenodo.3559042).

``` text
@software{de_bruin_j_2019_3559043,
  author       = {De Bruin, J},
  title        = {{Python Record Linkage Toolkit: A toolkit for
                   record linkage and duplicate detection in Python}},
  month        = dec,
  year         = 2019,
  publisher    = {Zenodo},
  version      = {v0.14},
  doi          = {10.5281/zenodo.3559043},
  url          = {https://doi.org/10.5281/zenodo.3559043}
}
```

## Need help?

Stuck on your record linkage code or problem? Any other questions? Don't
hestitate to send me an email (<jonathandebruinos@gmail.com>).




%package help
Summary:	Development documents and examples for recordlinkage
Provides:	python3-recordlinkage-doc
%description help
<div align="center">
  <img src="https://raw.githubusercontent.com/J535D165/recordlinkage/master/docs/images/recordlinkage-banner-transparent.svg"><br>
</div>

# RecordLinkage: powerful and modular Python record linkage toolkit

[![Pypi Version](https://badge.fury.io/py/recordlinkage.svg)](https://pypi.python.org/pypi/recordlinkage/)
[![Github Actions CI Status](https://github.com/J535D165/recordlinkage/workflows/tests/badge.svg?branch=master)](https://github.com/J535D165/recordlinkage/actions)
[![Code Coverage](https://codecov.io/gh/J535D165/recordlinkage/branch/master/graph/badge.svg)](https://codecov.io/gh/J535D165/recordlinkage)
[![Documentation Status](https://readthedocs.org/projects/recordlinkage/badge/?version=latest)](https://recordlinkage.readthedocs.io/en/latest/?badge=latest)
[![Zenodo DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.3559042.svg)](https://doi.org/10.5281/zenodo.3559042)

**RecordLinkage** is a powerful and modular record linkage toolkit to
link records in or between data sources. The toolkit provides most of
the tools needed for record linkage and deduplication. The package
contains indexing methods, functions to compare records and classifiers.
The package is developed for research and the linking of small or medium
sized files.

This project is inspired by the [Freely Extensible Biomedical Record
Linkage (FEBRL)](https://sourceforge.net/projects/febrl/) project, which
is a great project. In contrast with FEBRL, the recordlinkage project
uses [pandas](http://pandas.pydata.org/) and
[numpy](http://www.numpy.org/) for data handling and computations. The
use of *pandas*, a flexible and powerful data analysis and manipulation
library for Python, makes the record linkage process much easier and
faster. The extensive *pandas* library can be used to integrate your
record linkage directly into existing data manipulation projects.

One of the aims of this project is to make an easily extensible record
linkage framework. It is easy to include your own indexing algorithms,
comparison/similarity measures and classifiers.

## Basic linking example

Import the `recordlinkage` module with all important tools for record
linkage and import the data manipulation framework **pandas**.

``` python
import recordlinkage
import pandas
```

Load your data into pandas DataFrames.

``` python
df_a = pandas.DataFrame(YOUR_FIRST_DATASET)
df_b = pandas.DataFrame(YOUR_SECOND_DATASET)
```

Comparing all record can be computationally intensive. Therefore, we
make set of candidate links with one of the built-in indexing techniques
like **blocking**. In this example, only pairs of records that agree on
the surname are returned.

``` python
indexer = recordlinkage.Index()
indexer.block('surname')
candidate_links = indexer.index(df_a, df_b)
```

For each candidate link, compare the records with one of the comparison
or similarity algorithms in the Compare class.

``` python
c = recordlinkage.Compare()

c.string('name_a', 'name_b', method='jarowinkler', threshold=0.85)
c.exact('sex', 'gender')
c.date('dob', 'date_of_birth')
c.string('str_name', 'streetname', method='damerau_levenshtein', threshold=0.7)
c.exact('place', 'placename')
c.numeric('income', 'income', method='gauss', offset=3, scale=3, missing_value=0.5)

# The comparison vectors
feature_vectors = c.compute(candidate_links, df_a, df_b)
```

Classify the candidate links into matching or distinct pairs based on
their comparison result with one of the [classification
algorithms](https://recordlinkage.readthedocs.io/en/latest/ref-classifiers.html).
The following code classifies candidate pairs with a Logistic Regression
classifier. This (supervised machine learning) algorithm requires
training data.

``` python
logrg = recordlinkage.LogisticRegressionClassifier()
logrg.fit(TRAINING_COMPARISON_VECTORS, TRAINING_PAIRS)

logrg.predict(feature_vectors)
```

The following code shows the classification of candidate pairs with the
Expectation-Conditional Maximisation (ECM) algorithm. This variant of
the Expectation-Maximisation algorithm doesn't require training data
(unsupervised machine learning).

``` python
ecm = recordlinkage.ECMClassifier()
ecm.fit_predict(feature_vectors)
```

## Main Features

The main features of this Python record linkage toolkit are:

-   Clean and standardise data with easy to use tools
-   Make pairs of records with smart indexing methods such as
    **blocking** and **sorted neighbourhood indexing**
-   Compare records with a large number of comparison and similarity
    measures for different types of variables such as strings, numbers
    and dates.
-   Several classifications algorithms, both supervised and unsupervised
    algorithms.
-   Common record linkage evaluation tools
-   Several built-in datasets.

## Documentation

The most recent documentation and API reference can be found at
[recordlinkage.readthedocs.org](http://recordlinkage.readthedocs.org/en/latest/).
The documentation provides some basic usage examples like
[deduplication](http://recordlinkage.readthedocs.io/en/latest/notebooks/data_deduplication.html)
and
[linking](http://recordlinkage.readthedocs.io/en/latest/notebooks/link_two_dataframes.html)
census data. More examples are coming soon. If you do have interesting
examples to share, let us know.

## Installation

The Python Record linkage Toolkit requires Python 3.6 or higher. Install the
package easily with pip

``` sh
pip install recordlinkage
```

Python 2.7 users can use version \<= 0.13, but it is advised to use
Python \>= 3.5.

The toolkit depends on popular packages like
[Pandas](https://github.com/pydata/pandas),
[Numpy](http://www.numpy.org), [Scipy](https://www.scipy.org/) and,
[Scikit-learn](http://scikit-learn.org/). A complete list of
dependencies can be found in the [installation
manual](https://recordlinkage.readthedocs.io/en/latest/installation.html)
as well as recommended and optional dependencies.

## License

The license for this record linkage tool is BSD-3-Clause.

## Citation

Please cite this package when being used in an academic context. Ensure
that the DOI and version match the installed version. Citatation styles
can be found on the publishers website
[10.5281/zenodo.3559042](https://doi.org/10.5281/zenodo.3559042).

``` text
@software{de_bruin_j_2019_3559043,
  author       = {De Bruin, J},
  title        = {{Python Record Linkage Toolkit: A toolkit for
                   record linkage and duplicate detection in Python}},
  month        = dec,
  year         = 2019,
  publisher    = {Zenodo},
  version      = {v0.14},
  doi          = {10.5281/zenodo.3559043},
  url          = {https://doi.org/10.5281/zenodo.3559043}
}
```

## Need help?

Stuck on your record linkage code or problem? Any other questions? Don't
hestitate to send me an email (<jonathandebruinos@gmail.com>).




%prep
%autosetup -n recordlinkage-0.15

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-recordlinkage -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Fri Apr 21 2023 Python_Bot <Python_Bot@openeuler.org> - 0.15-1
- Package Spec generated