summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--.gitignore1
-rw-r--r--python-rediz.spec227
-rw-r--r--sources1
3 files changed, 229 insertions, 0 deletions
diff --git a/.gitignore b/.gitignore
index e69de29..f37a2d4 100644
--- a/.gitignore
+++ b/.gitignore
@@ -0,0 +1 @@
+/rediz-1.0.12.tar.gz
diff --git a/python-rediz.spec b/python-rediz.spec
new file mode 100644
index 0000000..cb659cb
--- /dev/null
+++ b/python-rediz.spec
@@ -0,0 +1,227 @@
+%global _empty_manifest_terminate_build 0
+Name: python-rediz
+Version: 1.0.12
+Release: 1
+Summary: Powering community nowcasts at www.microprediction.org
+License: MIT
+URL: https://github.com/microprediction/rediz
+Source0: https://mirrors.nju.edu.cn/pypi/web/packages/9f/41/0cbf558ccc0842b6884857697ffe7b6751df3b5f57b6de2e578f04e0b86e/rediz-1.0.12.tar.gz
+BuildArch: noarch
+
+Requires: python3-microconventions
+Requires: python3-fakeredis
+Requires: python3-getjson
+Requires: python3-redis
+Requires: python3-sortedcontainers
+Requires: python3-numpy
+Requires: python3-pymorton
+Requires: python3-scipy
+
+%description
+
+
+# Rediz
+
+Server code for open community microprediction at www.microprediction.org.
+
+### Microprediction.Org
+
+![](https://i.imgur.com/yKItXmT.png)
+
+### Overview
+
+The python packages called "microprediction" (user client library) and "rediz" (system implementation using redis as transport) are demonstrated at www.microprediction.org, where they
+make it easy for anyone who needs a live source of data predicted to receive help from clever humans and self-navigating time series algorithms. They do this by:
+
+ - Obtaining a write_key with microconventions.create_key(difficulty=12), which takes several hours
+ - Using the write_key to update a live quantity, such as https://www.microprediction.org/live/cop.json
+ - Repeating often.
+
+They can then access history (e.g. https://www.microprediction.org/live/lagged::cop.json) and predictions (e.g. https://www.microprediction.org/cdf/cop.json). This is an easy way to
+normalize data and perform anomaly detection. Over time it may garner other insights such as assessment of the predictive value of the data stream the identities of streams that
+might be causally related.
+
+This setup is especially well suited to collective prediction of civic data streams such as transport, water, electricity, public supply chain indicators or the spread of infectious diseases. The client
+library
+https://github.com/microprediction/rediz/blob/master/README.md and site www.microprediction.org provide more information.
+
+### Related packages and dependencies
+
+ muid getjson
+ | |
+ microconventions
+ | |
+ rediz microprediction
+
+
+- Conventions https://github.com/microprediction/microconventions/blob/master/README.md
+- Microprediction https://github.com/microprediction/rediz/blob/master/README.md
+
+### Rediz details
+
+This may be a little stale.
+
+ - https://github.com/microprediction/rediz/blob/master/README_REDIZ.md
+ - https://github.com/microprediction/rediz/blob/master/README_REDIZ_DETAILS.md
+
+
+
+
+
+
+%package -n python3-rediz
+Summary: Powering community nowcasts at www.microprediction.org
+Provides: python-rediz
+BuildRequires: python3-devel
+BuildRequires: python3-setuptools
+BuildRequires: python3-pip
+%description -n python3-rediz
+
+
+# Rediz
+
+Server code for open community microprediction at www.microprediction.org.
+
+### Microprediction.Org
+
+![](https://i.imgur.com/yKItXmT.png)
+
+### Overview
+
+The python packages called "microprediction" (user client library) and "rediz" (system implementation using redis as transport) are demonstrated at www.microprediction.org, where they
+make it easy for anyone who needs a live source of data predicted to receive help from clever humans and self-navigating time series algorithms. They do this by:
+
+ - Obtaining a write_key with microconventions.create_key(difficulty=12), which takes several hours
+ - Using the write_key to update a live quantity, such as https://www.microprediction.org/live/cop.json
+ - Repeating often.
+
+They can then access history (e.g. https://www.microprediction.org/live/lagged::cop.json) and predictions (e.g. https://www.microprediction.org/cdf/cop.json). This is an easy way to
+normalize data and perform anomaly detection. Over time it may garner other insights such as assessment of the predictive value of the data stream the identities of streams that
+might be causally related.
+
+This setup is especially well suited to collective prediction of civic data streams such as transport, water, electricity, public supply chain indicators or the spread of infectious diseases. The client
+library
+https://github.com/microprediction/rediz/blob/master/README.md and site www.microprediction.org provide more information.
+
+### Related packages and dependencies
+
+ muid getjson
+ | |
+ microconventions
+ | |
+ rediz microprediction
+
+
+- Conventions https://github.com/microprediction/microconventions/blob/master/README.md
+- Microprediction https://github.com/microprediction/rediz/blob/master/README.md
+
+### Rediz details
+
+This may be a little stale.
+
+ - https://github.com/microprediction/rediz/blob/master/README_REDIZ.md
+ - https://github.com/microprediction/rediz/blob/master/README_REDIZ_DETAILS.md
+
+
+
+
+
+
+%package help
+Summary: Development documents and examples for rediz
+Provides: python3-rediz-doc
+%description help
+
+
+# Rediz
+
+Server code for open community microprediction at www.microprediction.org.
+
+### Microprediction.Org
+
+![](https://i.imgur.com/yKItXmT.png)
+
+### Overview
+
+The python packages called "microprediction" (user client library) and "rediz" (system implementation using redis as transport) are demonstrated at www.microprediction.org, where they
+make it easy for anyone who needs a live source of data predicted to receive help from clever humans and self-navigating time series algorithms. They do this by:
+
+ - Obtaining a write_key with microconventions.create_key(difficulty=12), which takes several hours
+ - Using the write_key to update a live quantity, such as https://www.microprediction.org/live/cop.json
+ - Repeating often.
+
+They can then access history (e.g. https://www.microprediction.org/live/lagged::cop.json) and predictions (e.g. https://www.microprediction.org/cdf/cop.json). This is an easy way to
+normalize data and perform anomaly detection. Over time it may garner other insights such as assessment of the predictive value of the data stream the identities of streams that
+might be causally related.
+
+This setup is especially well suited to collective prediction of civic data streams such as transport, water, electricity, public supply chain indicators or the spread of infectious diseases. The client
+library
+https://github.com/microprediction/rediz/blob/master/README.md and site www.microprediction.org provide more information.
+
+### Related packages and dependencies
+
+ muid getjson
+ | |
+ microconventions
+ | |
+ rediz microprediction
+
+
+- Conventions https://github.com/microprediction/microconventions/blob/master/README.md
+- Microprediction https://github.com/microprediction/rediz/blob/master/README.md
+
+### Rediz details
+
+This may be a little stale.
+
+ - https://github.com/microprediction/rediz/blob/master/README_REDIZ.md
+ - https://github.com/microprediction/rediz/blob/master/README_REDIZ_DETAILS.md
+
+
+
+
+
+
+%prep
+%autosetup -n rediz-1.0.12
+
+%build
+%py3_build
+
+%install
+%py3_install
+install -d -m755 %{buildroot}/%{_pkgdocdir}
+if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
+if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
+if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
+if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
+pushd %{buildroot}
+if [ -d usr/lib ]; then
+ find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/lib64 ]; then
+ find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/bin ]; then
+ find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/sbin ]; then
+ find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+touch doclist.lst
+if [ -d usr/share/man ]; then
+ find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
+fi
+popd
+mv %{buildroot}/filelist.lst .
+mv %{buildroot}/doclist.lst .
+
+%files -n python3-rediz -f filelist.lst
+%dir %{python3_sitelib}/*
+
+%files help -f doclist.lst
+%{_docdir}/*
+
+%changelog
+* Fri May 05 2023 Python_Bot <Python_Bot@openeuler.org> - 1.0.12-1
+- Package Spec generated
diff --git a/sources b/sources
new file mode 100644
index 0000000..30d4b9b
--- /dev/null
+++ b/sources
@@ -0,0 +1 @@
+f10a59505ff3a5afacd38fda24084569 rediz-1.0.12.tar.gz