1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
|
%global _empty_manifest_terminate_build 0
Name: python-replacy
Version: 3.7.2
Release: 1
Summary: ReplaCy = spaCy Matcher + pyInflect. Create rules, correct sentences.
License: MIT
URL: https://pypi.org/project/replacy/
Source0: https://mirrors.aliyun.com/pypi/web/packages/b2/3a/652fc5853e6e14d6dc7433ec9643bc327d82c9e277b1297380544a68f72a/replacy-3.7.2.tar.gz
BuildArch: noarch
Requires: python3-jsonschema
Requires: python3-lemminflect
Requires: python3-pyfunctional
%description
<p align="center">
<img src="./docs/replacy_logo.png" align="center" />
</p>
# replaCy: match & replace with spaCy
We found that in multiple projects we had duplicate code for using spaCy’s blazing fast matcher to do the same thing: Match-Replace-Grammaticalize. So we wrote replaCy!
- Match - spaCy’s matcher is great, and lets you match on text, shape, POS, dependency parse, and other features. We extended this with “match hooks”, predicates that get used in the callback function to further refine a match.
- Replace - Not built into spaCy’s matcher syntax, but easily added. You often want to replace a matched word with some other term.
- Grammaticalize - If you match on ”LEMMA”: “dance”, and replace with suggestions: ["sing"], but the actual match is danced, you need to conjugate “sing” appropriately. This is the “killer feature” of replaCy
[](https://spacy.io)
[](https://pypi.org/project/replacy/)
[](https://github.com/ambv/black)
<p align="center">
<img src="./docs/replacy_ex.png" align="center" />
</p>
## Requirements
- `spacy >= 2.0` (not installed by default, but replaCy needs to be instantiated with an `nlp` object)
## Installation
`pip install replacy`
## Quick start
```python
from replacy import ReplaceMatcher
from replacy.db import load_json
import spacy
match_dict = load_json('/path/to/your/match/dict.json')
# load nlp spacy model of your choice
nlp = spacy.load("en_core_web_sm")
rmatcher = ReplaceMatcher(nlp, match_dict=match_dict)
# get inflected suggestions
# look up the first suggestion
span = rmatcher("She extracts revenge.")[0]
span._.suggestions
# >>> ['exacts']
```
## Input
ReplaceMatcher accepts both text and spaCy doc.
```python
# text is ok
span = r_matcher("She extracts revenge.")[0]
# doc is ok too
doc = nlp("She extracts revenge.")
span = r_matcher(doc)[0]
```
## match_dict.json format
Here is a minimal `match_dict.json`:
```json
{
"extract-revenge": {
"patterns": [
{
"LEMMA": "extract",
"TEMPLATE_ID": 1
}
],
"suggestions": [
[
{
"TEXT": "exact",
"FROM_TEMPLATE_ID": 1
}
]
],
"match_hook": [
{
"name": "succeeded_by_phrase",
"args": "revenge",
"match_if_predicate_is": true
}
],
"test": {
"positive": [
"And at the same time extract revenge on those he so despises?",
"Watch as Tampa Bay extracts revenge against his former Los Angeles Rams team."
],
"negative": ["Mother flavours her custards with lemon extract."]
}
}
}
```
For more information how to compose `match_dict` see our [wiki](https://github.com/Qordobacode/replaCy/wiki/match_dict.json-format):
# Citing
If you use replaCy in your research, please cite with the following BibText
```bibtext
@misc{havens2019replacy,
title = {SpaCy match and replace, maintaining conjugation},
author = {Sam Havens, Aneta Stal, and Manhal Daaboul},
url = {https://github.com/Qordobacode/replaCy},
year = {2019}
}
%package -n python3-replacy
Summary: ReplaCy = spaCy Matcher + pyInflect. Create rules, correct sentences.
Provides: python-replacy
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-replacy
<p align="center">
<img src="./docs/replacy_logo.png" align="center" />
</p>
# replaCy: match & replace with spaCy
We found that in multiple projects we had duplicate code for using spaCy’s blazing fast matcher to do the same thing: Match-Replace-Grammaticalize. So we wrote replaCy!
- Match - spaCy’s matcher is great, and lets you match on text, shape, POS, dependency parse, and other features. We extended this with “match hooks”, predicates that get used in the callback function to further refine a match.
- Replace - Not built into spaCy’s matcher syntax, but easily added. You often want to replace a matched word with some other term.
- Grammaticalize - If you match on ”LEMMA”: “dance”, and replace with suggestions: ["sing"], but the actual match is danced, you need to conjugate “sing” appropriately. This is the “killer feature” of replaCy
[](https://spacy.io)
[](https://pypi.org/project/replacy/)
[](https://github.com/ambv/black)
<p align="center">
<img src="./docs/replacy_ex.png" align="center" />
</p>
## Requirements
- `spacy >= 2.0` (not installed by default, but replaCy needs to be instantiated with an `nlp` object)
## Installation
`pip install replacy`
## Quick start
```python
from replacy import ReplaceMatcher
from replacy.db import load_json
import spacy
match_dict = load_json('/path/to/your/match/dict.json')
# load nlp spacy model of your choice
nlp = spacy.load("en_core_web_sm")
rmatcher = ReplaceMatcher(nlp, match_dict=match_dict)
# get inflected suggestions
# look up the first suggestion
span = rmatcher("She extracts revenge.")[0]
span._.suggestions
# >>> ['exacts']
```
## Input
ReplaceMatcher accepts both text and spaCy doc.
```python
# text is ok
span = r_matcher("She extracts revenge.")[0]
# doc is ok too
doc = nlp("She extracts revenge.")
span = r_matcher(doc)[0]
```
## match_dict.json format
Here is a minimal `match_dict.json`:
```json
{
"extract-revenge": {
"patterns": [
{
"LEMMA": "extract",
"TEMPLATE_ID": 1
}
],
"suggestions": [
[
{
"TEXT": "exact",
"FROM_TEMPLATE_ID": 1
}
]
],
"match_hook": [
{
"name": "succeeded_by_phrase",
"args": "revenge",
"match_if_predicate_is": true
}
],
"test": {
"positive": [
"And at the same time extract revenge on those he so despises?",
"Watch as Tampa Bay extracts revenge against his former Los Angeles Rams team."
],
"negative": ["Mother flavours her custards with lemon extract."]
}
}
}
```
For more information how to compose `match_dict` see our [wiki](https://github.com/Qordobacode/replaCy/wiki/match_dict.json-format):
# Citing
If you use replaCy in your research, please cite with the following BibText
```bibtext
@misc{havens2019replacy,
title = {SpaCy match and replace, maintaining conjugation},
author = {Sam Havens, Aneta Stal, and Manhal Daaboul},
url = {https://github.com/Qordobacode/replaCy},
year = {2019}
}
%package help
Summary: Development documents and examples for replacy
Provides: python3-replacy-doc
%description help
<p align="center">
<img src="./docs/replacy_logo.png" align="center" />
</p>
# replaCy: match & replace with spaCy
We found that in multiple projects we had duplicate code for using spaCy’s blazing fast matcher to do the same thing: Match-Replace-Grammaticalize. So we wrote replaCy!
- Match - spaCy’s matcher is great, and lets you match on text, shape, POS, dependency parse, and other features. We extended this with “match hooks”, predicates that get used in the callback function to further refine a match.
- Replace - Not built into spaCy’s matcher syntax, but easily added. You often want to replace a matched word with some other term.
- Grammaticalize - If you match on ”LEMMA”: “dance”, and replace with suggestions: ["sing"], but the actual match is danced, you need to conjugate “sing” appropriately. This is the “killer feature” of replaCy
[](https://spacy.io)
[](https://pypi.org/project/replacy/)
[](https://github.com/ambv/black)
<p align="center">
<img src="./docs/replacy_ex.png" align="center" />
</p>
## Requirements
- `spacy >= 2.0` (not installed by default, but replaCy needs to be instantiated with an `nlp` object)
## Installation
`pip install replacy`
## Quick start
```python
from replacy import ReplaceMatcher
from replacy.db import load_json
import spacy
match_dict = load_json('/path/to/your/match/dict.json')
# load nlp spacy model of your choice
nlp = spacy.load("en_core_web_sm")
rmatcher = ReplaceMatcher(nlp, match_dict=match_dict)
# get inflected suggestions
# look up the first suggestion
span = rmatcher("She extracts revenge.")[0]
span._.suggestions
# >>> ['exacts']
```
## Input
ReplaceMatcher accepts both text and spaCy doc.
```python
# text is ok
span = r_matcher("She extracts revenge.")[0]
# doc is ok too
doc = nlp("She extracts revenge.")
span = r_matcher(doc)[0]
```
## match_dict.json format
Here is a minimal `match_dict.json`:
```json
{
"extract-revenge": {
"patterns": [
{
"LEMMA": "extract",
"TEMPLATE_ID": 1
}
],
"suggestions": [
[
{
"TEXT": "exact",
"FROM_TEMPLATE_ID": 1
}
]
],
"match_hook": [
{
"name": "succeeded_by_phrase",
"args": "revenge",
"match_if_predicate_is": true
}
],
"test": {
"positive": [
"And at the same time extract revenge on those he so despises?",
"Watch as Tampa Bay extracts revenge against his former Los Angeles Rams team."
],
"negative": ["Mother flavours her custards with lemon extract."]
}
}
}
```
For more information how to compose `match_dict` see our [wiki](https://github.com/Qordobacode/replaCy/wiki/match_dict.json-format):
# Citing
If you use replaCy in your research, please cite with the following BibText
```bibtext
@misc{havens2019replacy,
title = {SpaCy match and replace, maintaining conjugation},
author = {Sam Havens, Aneta Stal, and Manhal Daaboul},
url = {https://github.com/Qordobacode/replaCy},
year = {2019}
}
%prep
%autosetup -n replacy-3.7.2
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "\"/%h/%f.gz\"\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-replacy -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Thu Jun 08 2023 Python_Bot <Python_Bot@openeuler.org> - 3.7.2-1
- Package Spec generated
|