1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
|
%global _empty_manifest_terminate_build 0
Name: python-river
Version: 0.15.0
Release: 1
Summary: Online machine learning in Python
License: BSD-3
URL: https://github.com/online-ml/river
Source0: https://mirrors.nju.edu.cn/pypi/web/packages/1f/f1/5da6e6e625e789767bccc005058079ceb6a276c9ac22e767e3eb61e8ac08/river-0.15.0.tar.gz
Requires: python3-numpy
Requires: python3-scipy
Requires: python3-pandas
Requires: python3-dataclasses
Requires: python3-numpy
Requires: python3-scipy
Requires: python3-pandas
Requires: python3-scikit-learn
Requires: python3-scipy
Requires: python3-torch
Requires: python3-vowpalwabbit
Requires: python3-dominate
Requires: python3-slugify
Requires: python3-watermark
Requires: python3-river-torch
Requires: python3-numpy
Requires: python3-scipy
Requires: python3-pandas
Requires: python3-scikit-learn
Requires: python3-sqlalchemy
Requires: python3-vaex
Requires: python3-deep-river
Requires: python3-numpy
Requires: python3-scipy
Requires: python3-pandas
Requires: python3-black
Requires: python3-graphviz
Requires: python3-gym
Requires: python3-isort
Requires: python3-matplotlib
Requires: python3-mypy
Requires: python3-pre-commit
Requires: python3-pytest
Requires: python3-pyupgrade
Requires: python3-ruff
Requires: python3-scikit-learn
Requires: python3-sqlalchemy
Requires: python3-sympy
Requires: python3-numpy
Requires: python3-scipy
Requires: python3-pandas
Requires: python3-dominate
Requires: python3-flask
Requires: python3-ipykernel
Requires: python3-jupyter-client
Requires: python3-mike
Requires: python3-mkdocs
Requires: python3-mkdocs-awesome-pages-plugin
Requires: python3-mkdocs-charts-plugin
Requires: python3-mkdocs-material
Requires: python3-nbconvert
Requires: python3-slugify
Requires: python3-spacy
Requires: python3-watermark
Requires: python3-river-extra
Requires: python3-river-torch
%description
<p align="center">
<img height="220px" src="docs/img/logo.svg" alt="river_logo">
</p>
<p align="center">
<!-- Tests -->
<a href="https://github.com/online-ml/river/actions/workflows/ci.yml">
<img src="https://github.com/online-ml/river/actions/workflows/ci.yml/badge.svg" alt="CI Pipeline">
</a>
<!-- Documentation -->
<a href="https://riverml.xyz">
<img src="https://img.shields.io/website?label=docs&style=flat-square&url=https%3A%2F%2Friverml.xyz%2F" alt="documentation">
</a>
<!-- Discord -->
<a href="https://discord.gg/qNmrKEZMAn">
<img src="https://dcbadge.vercel.app/api/server/qNmrKEZMAn?style=flat-square" alt="discord">
</a>
<!-- Roadmap -->
<a href="https://github.com/orgs/online-ml/projects/3/">
<img src="https://img.shields.io/website?label=roadmap&style=flat-square&url=https://github.com/orgs/online-ml/projects/3/" alt="roadmap">
</a>
<!-- PyPI -->
<a href="https://pypi.org/project/river">
<img src="https://img.shields.io/pypi/v/river.svg?label=release&color=blue&style=flat-square" alt="pypi">
</a>
<!-- PePy -->
<a href="https://pepy.tech/project/river">
<img src="https://static.pepy.tech/badge/river?style=flat-square" alt="pepy">
</a>
<!-- Mypy -->
<a href="http://mypy-lang.org/">
<img src="http://www.mypy-lang.org/static/mypy_badge.svg" alt="mypy">
</a>
<!-- License -->
<a href="https://opensource.org/licenses/BSD-3-Clause">
<img src="https://img.shields.io/badge/License-BSD%203--Clause-blue.svg?style=flat-square" alt="bsd_3_license">
</a>
</p>
</br>
<p align="center">
River is a Python library for <a href="https://www.wikiwand.com/en/Online_machine_learning">online machine learning</a>. It aims to be the most user-friendly library for doing machine learning on streaming data. River is the result of a merger between <a href="https://github.com/MaxHalford/creme">creme</a> and <a href="https://github.com/scikit-multiflow/scikit-multiflow">scikit-multiflow</a>.
</p>
## ⚡️ Quickstart
As a quick example, we'll train a logistic regression to classify the [website phishing dataset](http://archive.ics.uci.edu/ml/datasets/Website+Phishing). Here's a look at the first observation in the dataset.
```python
>>> from pprint import pprint
>>> from river import datasets
>>> dataset = datasets.Phishing()
>>> for x, y in dataset:
... pprint(x)
... print(y)
... break
{'age_of_domain': 1,
'anchor_from_other_domain': 0.0,
'empty_server_form_handler': 0.0,
'https': 0.0,
'ip_in_url': 1,
'is_popular': 0.5,
'long_url': 1.0,
'popup_window': 0.0,
'request_from_other_domain': 0.0}
True
```
Now let's run the model on the dataset in a streaming fashion. We sequentially interleave predictions and model updates. Meanwhile, we update a performance metric to see how well the model is doing.
```python
>>> from river import compose
>>> from river import linear_model
>>> from river import metrics
>>> from river import preprocessing
>>> model = compose.Pipeline(
... preprocessing.StandardScaler(),
... linear_model.LogisticRegression()
... )
>>> metric = metrics.Accuracy()
>>> for x, y in dataset:
... y_pred = model.predict_one(x) # make a prediction
... metric = metric.update(y, y_pred) # update the metric
... model = model.learn_one(x, y) # make the model learn
>>> metric
Accuracy: 89.20%
```
Of course, this is just a contrived example. We welcome you to check the [introduction](https://riverml.xyz/dev/introduction/installation/) section of the documentation for a more thorough tutorial.
## 🛠 Installation
River is intended to work with **Python 3.8 and above**. Installation can be done with `pip`:
```sh
pip install river
```
There are [wheels available](https://pypi.org/project/river/#files) for Linux, MacOS, and Windows, which means that you most probably won't have to build River from source.
You can install the latest development version from GitHub as so:
```sh
pip install git+https://github.com/online-ml/river --upgrade
```
Or, through SSH:
```sh
pip install git+ssh://git@github.com/online-ml/river.git --upgrade
```
## 🔮 Features
- Linear models with a wide array of optimizers
- Nearest neighbors, decision trees, naïve Bayes
- Anomaly detection
- Drift detection
- Recommender systems
- Time series forecasting
- Imbalanced learning
- Clustering
- Feature extraction and selection
- Online statistics and metrics
- Built-in datasets
- Progressive model validation
- Model pipelines as a first-class citizen
- Check out [the API](https://riverml.xyz/latest/api/overview/) for a comprehensive overview
## 🤔 Should I be using River?
You should ask yourself if you need online machine learning. The answer is likely no. Most of the time batch learning does the job just fine. An online approach might fit the bill if:
- You want a model that can learn from new data without having to revisit past data.
- You want a model which is robust to [concept drift](https://www.wikiwand.com/en/Concept_drift).
- You want to develop your model in a way that is closer to what occurs in a production context, which is usually event-based.
Some specificities of River are that:
- It focuses on clarity and user experience, more so than performance.
- It's very fast at processing one sample at a time. Try it, you'll see.
- It plays nicely with the rest of Python's ecosystem.
## 🔗 Useful links
- [Documentation](https://riverml.xyz)
- [Package releases](https://pypi.org/project/river/#history)
- [awesome-online-machine-learning](https://github.com/online-ml/awesome-online-machine-learning)
- [2022 presentation at GAIA](https://www.youtube.com/watch?v=nzFTmJnIakk&list=PLIU25-FciwNaz5PqWPiHmPCMOFYoEsJ8c&index=5)
- [Online Clustering: Algorithms, Evaluation, Metrics, Applications and Benchmarking](https://dl.acm.org/doi/10.1145/3534678.3542600) from [KDD'22](https://kdd.org/kdd2022/).
## 👐 Contributing
Feel free to contribute in any way you like, we're always open to new ideas and approaches.
- [Open a discussion](https://github.com/online-ml/river/discussions/new) if you have any question or enquiry whatsoever. It's more useful to ask your question in public rather than sending us a private email. It's also encouraged to open a discussion before contributing, so that everyone is aligned and unnecessary work is avoided.
- Feel welcome to [open an issue](https://github.com/online-ml/river/issues/new/choose) if you think you've spotted a bug or a performance issue.
- Our [roadmap](https://github.com/orgs/online-ml/projects/3?query=is%3Aopen+sort%3Aupdated-desc) is public. Feel free to work on anything that catches your eye, or to make suggestions.
Please check out the [contribution guidelines](https://github.com/online-ml/river/blob/main/CONTRIBUTING.md) if you want to bring modifications to the code base.
## 🤝 Affiliations
<p align="center">
<img width="70%" src="https://docs.google.com/drawings/d/e/2PACX-1vSagEhWAjDsb0c24En_fhWAf9DJZbyh5YjU7lK0sNowD2m9uv9TuFm-U77k6ObqTyN2mP05Avf6TCJc/pub?w=2073&h=1127" alt="affiliations">
</p>
## 💬 Citation
If River has been useful to you and you would like to cite it in an scientific publication, please refer to the [paper](https://www.jmlr.org/papers/volume22/20-1380/20-1380.pdf) published at JMLR:
```bibtex
@article{montiel2021river,
title={River: machine learning for streaming data in Python},
author={Montiel, Jacob and Halford, Max and Mastelini, Saulo Martiello
and Bolmier, Geoffrey and Sourty, Raphael and Vaysse, Robin and Zouitine, Adil
and Gomes, Heitor Murilo and Read, Jesse and Abdessalem, Talel and others},
year={2021}
}
```
## 📝 License
River is free and open-source software licensed under the [3-clause BSD license](https://github.com/online-ml/river/blob/main/LICENSE).
%package -n python3-river
Summary: Online machine learning in Python
Provides: python-river
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
BuildRequires: python3-cffi
BuildRequires: gcc
BuildRequires: gdb
%description -n python3-river
<p align="center">
<img height="220px" src="docs/img/logo.svg" alt="river_logo">
</p>
<p align="center">
<!-- Tests -->
<a href="https://github.com/online-ml/river/actions/workflows/ci.yml">
<img src="https://github.com/online-ml/river/actions/workflows/ci.yml/badge.svg" alt="CI Pipeline">
</a>
<!-- Documentation -->
<a href="https://riverml.xyz">
<img src="https://img.shields.io/website?label=docs&style=flat-square&url=https%3A%2F%2Friverml.xyz%2F" alt="documentation">
</a>
<!-- Discord -->
<a href="https://discord.gg/qNmrKEZMAn">
<img src="https://dcbadge.vercel.app/api/server/qNmrKEZMAn?style=flat-square" alt="discord">
</a>
<!-- Roadmap -->
<a href="https://github.com/orgs/online-ml/projects/3/">
<img src="https://img.shields.io/website?label=roadmap&style=flat-square&url=https://github.com/orgs/online-ml/projects/3/" alt="roadmap">
</a>
<!-- PyPI -->
<a href="https://pypi.org/project/river">
<img src="https://img.shields.io/pypi/v/river.svg?label=release&color=blue&style=flat-square" alt="pypi">
</a>
<!-- PePy -->
<a href="https://pepy.tech/project/river">
<img src="https://static.pepy.tech/badge/river?style=flat-square" alt="pepy">
</a>
<!-- Mypy -->
<a href="http://mypy-lang.org/">
<img src="http://www.mypy-lang.org/static/mypy_badge.svg" alt="mypy">
</a>
<!-- License -->
<a href="https://opensource.org/licenses/BSD-3-Clause">
<img src="https://img.shields.io/badge/License-BSD%203--Clause-blue.svg?style=flat-square" alt="bsd_3_license">
</a>
</p>
</br>
<p align="center">
River is a Python library for <a href="https://www.wikiwand.com/en/Online_machine_learning">online machine learning</a>. It aims to be the most user-friendly library for doing machine learning on streaming data. River is the result of a merger between <a href="https://github.com/MaxHalford/creme">creme</a> and <a href="https://github.com/scikit-multiflow/scikit-multiflow">scikit-multiflow</a>.
</p>
## ⚡️ Quickstart
As a quick example, we'll train a logistic regression to classify the [website phishing dataset](http://archive.ics.uci.edu/ml/datasets/Website+Phishing). Here's a look at the first observation in the dataset.
```python
>>> from pprint import pprint
>>> from river import datasets
>>> dataset = datasets.Phishing()
>>> for x, y in dataset:
... pprint(x)
... print(y)
... break
{'age_of_domain': 1,
'anchor_from_other_domain': 0.0,
'empty_server_form_handler': 0.0,
'https': 0.0,
'ip_in_url': 1,
'is_popular': 0.5,
'long_url': 1.0,
'popup_window': 0.0,
'request_from_other_domain': 0.0}
True
```
Now let's run the model on the dataset in a streaming fashion. We sequentially interleave predictions and model updates. Meanwhile, we update a performance metric to see how well the model is doing.
```python
>>> from river import compose
>>> from river import linear_model
>>> from river import metrics
>>> from river import preprocessing
>>> model = compose.Pipeline(
... preprocessing.StandardScaler(),
... linear_model.LogisticRegression()
... )
>>> metric = metrics.Accuracy()
>>> for x, y in dataset:
... y_pred = model.predict_one(x) # make a prediction
... metric = metric.update(y, y_pred) # update the metric
... model = model.learn_one(x, y) # make the model learn
>>> metric
Accuracy: 89.20%
```
Of course, this is just a contrived example. We welcome you to check the [introduction](https://riverml.xyz/dev/introduction/installation/) section of the documentation for a more thorough tutorial.
## 🛠 Installation
River is intended to work with **Python 3.8 and above**. Installation can be done with `pip`:
```sh
pip install river
```
There are [wheels available](https://pypi.org/project/river/#files) for Linux, MacOS, and Windows, which means that you most probably won't have to build River from source.
You can install the latest development version from GitHub as so:
```sh
pip install git+https://github.com/online-ml/river --upgrade
```
Or, through SSH:
```sh
pip install git+ssh://git@github.com/online-ml/river.git --upgrade
```
## 🔮 Features
- Linear models with a wide array of optimizers
- Nearest neighbors, decision trees, naïve Bayes
- Anomaly detection
- Drift detection
- Recommender systems
- Time series forecasting
- Imbalanced learning
- Clustering
- Feature extraction and selection
- Online statistics and metrics
- Built-in datasets
- Progressive model validation
- Model pipelines as a first-class citizen
- Check out [the API](https://riverml.xyz/latest/api/overview/) for a comprehensive overview
## 🤔 Should I be using River?
You should ask yourself if you need online machine learning. The answer is likely no. Most of the time batch learning does the job just fine. An online approach might fit the bill if:
- You want a model that can learn from new data without having to revisit past data.
- You want a model which is robust to [concept drift](https://www.wikiwand.com/en/Concept_drift).
- You want to develop your model in a way that is closer to what occurs in a production context, which is usually event-based.
Some specificities of River are that:
- It focuses on clarity and user experience, more so than performance.
- It's very fast at processing one sample at a time. Try it, you'll see.
- It plays nicely with the rest of Python's ecosystem.
## 🔗 Useful links
- [Documentation](https://riverml.xyz)
- [Package releases](https://pypi.org/project/river/#history)
- [awesome-online-machine-learning](https://github.com/online-ml/awesome-online-machine-learning)
- [2022 presentation at GAIA](https://www.youtube.com/watch?v=nzFTmJnIakk&list=PLIU25-FciwNaz5PqWPiHmPCMOFYoEsJ8c&index=5)
- [Online Clustering: Algorithms, Evaluation, Metrics, Applications and Benchmarking](https://dl.acm.org/doi/10.1145/3534678.3542600) from [KDD'22](https://kdd.org/kdd2022/).
## 👐 Contributing
Feel free to contribute in any way you like, we're always open to new ideas and approaches.
- [Open a discussion](https://github.com/online-ml/river/discussions/new) if you have any question or enquiry whatsoever. It's more useful to ask your question in public rather than sending us a private email. It's also encouraged to open a discussion before contributing, so that everyone is aligned and unnecessary work is avoided.
- Feel welcome to [open an issue](https://github.com/online-ml/river/issues/new/choose) if you think you've spotted a bug or a performance issue.
- Our [roadmap](https://github.com/orgs/online-ml/projects/3?query=is%3Aopen+sort%3Aupdated-desc) is public. Feel free to work on anything that catches your eye, or to make suggestions.
Please check out the [contribution guidelines](https://github.com/online-ml/river/blob/main/CONTRIBUTING.md) if you want to bring modifications to the code base.
## 🤝 Affiliations
<p align="center">
<img width="70%" src="https://docs.google.com/drawings/d/e/2PACX-1vSagEhWAjDsb0c24En_fhWAf9DJZbyh5YjU7lK0sNowD2m9uv9TuFm-U77k6ObqTyN2mP05Avf6TCJc/pub?w=2073&h=1127" alt="affiliations">
</p>
## 💬 Citation
If River has been useful to you and you would like to cite it in an scientific publication, please refer to the [paper](https://www.jmlr.org/papers/volume22/20-1380/20-1380.pdf) published at JMLR:
```bibtex
@article{montiel2021river,
title={River: machine learning for streaming data in Python},
author={Montiel, Jacob and Halford, Max and Mastelini, Saulo Martiello
and Bolmier, Geoffrey and Sourty, Raphael and Vaysse, Robin and Zouitine, Adil
and Gomes, Heitor Murilo and Read, Jesse and Abdessalem, Talel and others},
year={2021}
}
```
## 📝 License
River is free and open-source software licensed under the [3-clause BSD license](https://github.com/online-ml/river/blob/main/LICENSE).
%package help
Summary: Development documents and examples for river
Provides: python3-river-doc
%description help
<p align="center">
<img height="220px" src="docs/img/logo.svg" alt="river_logo">
</p>
<p align="center">
<!-- Tests -->
<a href="https://github.com/online-ml/river/actions/workflows/ci.yml">
<img src="https://github.com/online-ml/river/actions/workflows/ci.yml/badge.svg" alt="CI Pipeline">
</a>
<!-- Documentation -->
<a href="https://riverml.xyz">
<img src="https://img.shields.io/website?label=docs&style=flat-square&url=https%3A%2F%2Friverml.xyz%2F" alt="documentation">
</a>
<!-- Discord -->
<a href="https://discord.gg/qNmrKEZMAn">
<img src="https://dcbadge.vercel.app/api/server/qNmrKEZMAn?style=flat-square" alt="discord">
</a>
<!-- Roadmap -->
<a href="https://github.com/orgs/online-ml/projects/3/">
<img src="https://img.shields.io/website?label=roadmap&style=flat-square&url=https://github.com/orgs/online-ml/projects/3/" alt="roadmap">
</a>
<!-- PyPI -->
<a href="https://pypi.org/project/river">
<img src="https://img.shields.io/pypi/v/river.svg?label=release&color=blue&style=flat-square" alt="pypi">
</a>
<!-- PePy -->
<a href="https://pepy.tech/project/river">
<img src="https://static.pepy.tech/badge/river?style=flat-square" alt="pepy">
</a>
<!-- Mypy -->
<a href="http://mypy-lang.org/">
<img src="http://www.mypy-lang.org/static/mypy_badge.svg" alt="mypy">
</a>
<!-- License -->
<a href="https://opensource.org/licenses/BSD-3-Clause">
<img src="https://img.shields.io/badge/License-BSD%203--Clause-blue.svg?style=flat-square" alt="bsd_3_license">
</a>
</p>
</br>
<p align="center">
River is a Python library for <a href="https://www.wikiwand.com/en/Online_machine_learning">online machine learning</a>. It aims to be the most user-friendly library for doing machine learning on streaming data. River is the result of a merger between <a href="https://github.com/MaxHalford/creme">creme</a> and <a href="https://github.com/scikit-multiflow/scikit-multiflow">scikit-multiflow</a>.
</p>
## ⚡️ Quickstart
As a quick example, we'll train a logistic regression to classify the [website phishing dataset](http://archive.ics.uci.edu/ml/datasets/Website+Phishing). Here's a look at the first observation in the dataset.
```python
>>> from pprint import pprint
>>> from river import datasets
>>> dataset = datasets.Phishing()
>>> for x, y in dataset:
... pprint(x)
... print(y)
... break
{'age_of_domain': 1,
'anchor_from_other_domain': 0.0,
'empty_server_form_handler': 0.0,
'https': 0.0,
'ip_in_url': 1,
'is_popular': 0.5,
'long_url': 1.0,
'popup_window': 0.0,
'request_from_other_domain': 0.0}
True
```
Now let's run the model on the dataset in a streaming fashion. We sequentially interleave predictions and model updates. Meanwhile, we update a performance metric to see how well the model is doing.
```python
>>> from river import compose
>>> from river import linear_model
>>> from river import metrics
>>> from river import preprocessing
>>> model = compose.Pipeline(
... preprocessing.StandardScaler(),
... linear_model.LogisticRegression()
... )
>>> metric = metrics.Accuracy()
>>> for x, y in dataset:
... y_pred = model.predict_one(x) # make a prediction
... metric = metric.update(y, y_pred) # update the metric
... model = model.learn_one(x, y) # make the model learn
>>> metric
Accuracy: 89.20%
```
Of course, this is just a contrived example. We welcome you to check the [introduction](https://riverml.xyz/dev/introduction/installation/) section of the documentation for a more thorough tutorial.
## 🛠 Installation
River is intended to work with **Python 3.8 and above**. Installation can be done with `pip`:
```sh
pip install river
```
There are [wheels available](https://pypi.org/project/river/#files) for Linux, MacOS, and Windows, which means that you most probably won't have to build River from source.
You can install the latest development version from GitHub as so:
```sh
pip install git+https://github.com/online-ml/river --upgrade
```
Or, through SSH:
```sh
pip install git+ssh://git@github.com/online-ml/river.git --upgrade
```
## 🔮 Features
- Linear models with a wide array of optimizers
- Nearest neighbors, decision trees, naïve Bayes
- Anomaly detection
- Drift detection
- Recommender systems
- Time series forecasting
- Imbalanced learning
- Clustering
- Feature extraction and selection
- Online statistics and metrics
- Built-in datasets
- Progressive model validation
- Model pipelines as a first-class citizen
- Check out [the API](https://riverml.xyz/latest/api/overview/) for a comprehensive overview
## 🤔 Should I be using River?
You should ask yourself if you need online machine learning. The answer is likely no. Most of the time batch learning does the job just fine. An online approach might fit the bill if:
- You want a model that can learn from new data without having to revisit past data.
- You want a model which is robust to [concept drift](https://www.wikiwand.com/en/Concept_drift).
- You want to develop your model in a way that is closer to what occurs in a production context, which is usually event-based.
Some specificities of River are that:
- It focuses on clarity and user experience, more so than performance.
- It's very fast at processing one sample at a time. Try it, you'll see.
- It plays nicely with the rest of Python's ecosystem.
## 🔗 Useful links
- [Documentation](https://riverml.xyz)
- [Package releases](https://pypi.org/project/river/#history)
- [awesome-online-machine-learning](https://github.com/online-ml/awesome-online-machine-learning)
- [2022 presentation at GAIA](https://www.youtube.com/watch?v=nzFTmJnIakk&list=PLIU25-FciwNaz5PqWPiHmPCMOFYoEsJ8c&index=5)
- [Online Clustering: Algorithms, Evaluation, Metrics, Applications and Benchmarking](https://dl.acm.org/doi/10.1145/3534678.3542600) from [KDD'22](https://kdd.org/kdd2022/).
## 👐 Contributing
Feel free to contribute in any way you like, we're always open to new ideas and approaches.
- [Open a discussion](https://github.com/online-ml/river/discussions/new) if you have any question or enquiry whatsoever. It's more useful to ask your question in public rather than sending us a private email. It's also encouraged to open a discussion before contributing, so that everyone is aligned and unnecessary work is avoided.
- Feel welcome to [open an issue](https://github.com/online-ml/river/issues/new/choose) if you think you've spotted a bug or a performance issue.
- Our [roadmap](https://github.com/orgs/online-ml/projects/3?query=is%3Aopen+sort%3Aupdated-desc) is public. Feel free to work on anything that catches your eye, or to make suggestions.
Please check out the [contribution guidelines](https://github.com/online-ml/river/blob/main/CONTRIBUTING.md) if you want to bring modifications to the code base.
## 🤝 Affiliations
<p align="center">
<img width="70%" src="https://docs.google.com/drawings/d/e/2PACX-1vSagEhWAjDsb0c24En_fhWAf9DJZbyh5YjU7lK0sNowD2m9uv9TuFm-U77k6ObqTyN2mP05Avf6TCJc/pub?w=2073&h=1127" alt="affiliations">
</p>
## 💬 Citation
If River has been useful to you and you would like to cite it in an scientific publication, please refer to the [paper](https://www.jmlr.org/papers/volume22/20-1380/20-1380.pdf) published at JMLR:
```bibtex
@article{montiel2021river,
title={River: machine learning for streaming data in Python},
author={Montiel, Jacob and Halford, Max and Mastelini, Saulo Martiello
and Bolmier, Geoffrey and Sourty, Raphael and Vaysse, Robin and Zouitine, Adil
and Gomes, Heitor Murilo and Read, Jesse and Abdessalem, Talel and others},
year={2021}
}
```
## 📝 License
River is free and open-source software licensed under the [3-clause BSD license](https://github.com/online-ml/river/blob/main/LICENSE).
%prep
%autosetup -n river-0.15.0
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-river -f filelist.lst
%dir %{python3_sitearch}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Fri May 05 2023 Python_Bot <Python_Bot@openeuler.org> - 0.15.0-1
- Package Spec generated
|