summaryrefslogtreecommitdiff
path: root/python-robustats.spec
blob: 1ddc3609b21e7e57ba7738b3f96b3683e9b06224 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
%global _empty_manifest_terminate_build 0
Name:		python-robustats
Version:	0.1.7
Release:	1
Summary:	Robustats is a Python library for high-performance computation of robust statistical estimators.
License:	MIT
URL:		https://github.com/FilippoBovo/robustats
Source0:	https://mirrors.nju.edu.cn/pypi/web/packages/10/e1/64507951c10912a423239c10b3842eea284951c083a1c12882cd3b147f84/robustats-0.1.7.tar.gz
BuildArch:	noarch


%description
# Robustats

Robustats is a Python library for high-performance computation of robust statistical estimators.

The functions that compute the robust estimators are [implemented in C](c) for speed and [called by Python](robustats).

Estimators implemented in the library:

- **Weighted Median** (temporal complexity: `O(n)`) \[1, 2, 3\]
- **Medcouple** (temporal complexity: `O(n * log(n))`) [4, 5, 6, 7]
- **Mode** (temporal complexity: `O(n * log(n))`) [8]

## How to Install

This library requires Python 3.

You can install the library using Pip.

```shell
pip install robustats
```

You can also install the library directly from GitHub using the following command.

```shell
pip install -e 'git+https://github.com/FilippoBovo/robustats.git#egg=robustats'
```

Otherwise, you may clone the repository, and install and test the Robustats package in the following way.

```shell
git clone https://github.com/FilippoBovo/robustats.git
cd robustats
pip install -e .
python -m unittest
```

## How to Use

This is an example of how to use the Robustats library in Python.

```python
import numpy as np
import robustats


# Weighted Median
x = np.array([1.1, 5.3, 3.7, 2.1, 7.0, 9.9])
weights = np.array([1.1, 0.4, 2.1, 3.5, 1.2, 0.8])

weighted_median = robustats.weighted_median(x, weights)

print("The weighted median is {}".format(weighted_median))
# Output: The weighted median is 2.1


# Medcouple
x = np.array([0.2, 0.17, 0.08, 0.16, 0.88, 0.86, 0.09, 0.54, 0.27, 0.14])

medcouple = robustats.medcouple(x)

print("The medcouple is {}".format(medcouple))
# Output: The medcouple is 0.7749999999999999


# Mode
x = np.array([1., 2., 2., 3., 3., 3., 4., 4., 5.])

mode = robustats.mode(x)

print("The mode is {}".format(mode))
# Output: The mode is 3.0
```

## How to Contribute

If you wish to contribute to this library, please follow the patterns and style of the rest of the code.

Moreover, install the Git hooks.

```shell
git config core.hooksPath .githooks
```



Tips:

- In C, use `malloc` to allocate memory to the heap, instead of creating arrays that allocate memory to the stack, as with large array we would incur in a [segmentation fault due to stack overflow](https://stackoverflow.com/a/1847886).
- Avoid recursions where possible to limit the spatial complexity of the problem. In place of recursions, use loops.

## References

\[1\] [Cormen, Leiserson, Rivest, Stein - Introduction to Algorithms (3rd Edition)](https://books.google.co.uk/books?id=aefUBQAAQBAJ&lpg=PR5&ots=dN8rWuZQaW&dq=Cormen%2C%20Leiserson%2C%20Rivest%2C%20Stein%20-%20Introduction%20to%20Algorithms&lr&pg=PP1#v=onepage&q&f=false).

\[2\] [Cormen - Introduction to Algorithms (3rd Edition) - Instructor's Manual](https://cdn.manesht.ir/19908/Introduction%20to%20Algorithms.pdf).

\[3\] [Weighted median on Wikipedia](https://en.wikipedia.org/wiki/Weighted_median).

\[4\] [G. Brys; M. Hubert; A. Struyf (November 2004). "A Robust Measure of Skewness". *Journal of Computational and Graphical Statistics*. **13** (4): 996–1017.](https://doi.org/10.1198%2F106186004X12632)

\[5\] [Donald B. Johnson; Tetsuo Mizoguchi (May 1978). "Selecting The Kth Element In X + Y And X1 + X2 +...+ Xm". *SIAM Journal on Computing*. **7** (2): 147–153.](https://doi.org/10.1137%2F0207013)

\[6\] [Medcouple implementation in Python by Jordi Gutiérrez Hermoso.](http://inversethought.com/hg/)

\[7\] [Medcouple on Wikipedia.](https://en.wikipedia.org/wiki/Medcouple)

\[8\] [David R. Bickel, Rudolf Frühwirth. "On a fast, robust estimator of the mode: Comparisons to other robust estimators with applications", *Computational Statistics & Data Analysis*, Volume 50, Issue 12, 2006, Pages 3500-3530, ISSN 0167-9473.](https://doi.org/10.1016/j.csda.2005.07.011)

%package -n python3-robustats
Summary:	Robustats is a Python library for high-performance computation of robust statistical estimators.
Provides:	python-robustats
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-robustats
# Robustats

Robustats is a Python library for high-performance computation of robust statistical estimators.

The functions that compute the robust estimators are [implemented in C](c) for speed and [called by Python](robustats).

Estimators implemented in the library:

- **Weighted Median** (temporal complexity: `O(n)`) \[1, 2, 3\]
- **Medcouple** (temporal complexity: `O(n * log(n))`) [4, 5, 6, 7]
- **Mode** (temporal complexity: `O(n * log(n))`) [8]

## How to Install

This library requires Python 3.

You can install the library using Pip.

```shell
pip install robustats
```

You can also install the library directly from GitHub using the following command.

```shell
pip install -e 'git+https://github.com/FilippoBovo/robustats.git#egg=robustats'
```

Otherwise, you may clone the repository, and install and test the Robustats package in the following way.

```shell
git clone https://github.com/FilippoBovo/robustats.git
cd robustats
pip install -e .
python -m unittest
```

## How to Use

This is an example of how to use the Robustats library in Python.

```python
import numpy as np
import robustats


# Weighted Median
x = np.array([1.1, 5.3, 3.7, 2.1, 7.0, 9.9])
weights = np.array([1.1, 0.4, 2.1, 3.5, 1.2, 0.8])

weighted_median = robustats.weighted_median(x, weights)

print("The weighted median is {}".format(weighted_median))
# Output: The weighted median is 2.1


# Medcouple
x = np.array([0.2, 0.17, 0.08, 0.16, 0.88, 0.86, 0.09, 0.54, 0.27, 0.14])

medcouple = robustats.medcouple(x)

print("The medcouple is {}".format(medcouple))
# Output: The medcouple is 0.7749999999999999


# Mode
x = np.array([1., 2., 2., 3., 3., 3., 4., 4., 5.])

mode = robustats.mode(x)

print("The mode is {}".format(mode))
# Output: The mode is 3.0
```

## How to Contribute

If you wish to contribute to this library, please follow the patterns and style of the rest of the code.

Moreover, install the Git hooks.

```shell
git config core.hooksPath .githooks
```



Tips:

- In C, use `malloc` to allocate memory to the heap, instead of creating arrays that allocate memory to the stack, as with large array we would incur in a [segmentation fault due to stack overflow](https://stackoverflow.com/a/1847886).
- Avoid recursions where possible to limit the spatial complexity of the problem. In place of recursions, use loops.

## References

\[1\] [Cormen, Leiserson, Rivest, Stein - Introduction to Algorithms (3rd Edition)](https://books.google.co.uk/books?id=aefUBQAAQBAJ&lpg=PR5&ots=dN8rWuZQaW&dq=Cormen%2C%20Leiserson%2C%20Rivest%2C%20Stein%20-%20Introduction%20to%20Algorithms&lr&pg=PP1#v=onepage&q&f=false).

\[2\] [Cormen - Introduction to Algorithms (3rd Edition) - Instructor's Manual](https://cdn.manesht.ir/19908/Introduction%20to%20Algorithms.pdf).

\[3\] [Weighted median on Wikipedia](https://en.wikipedia.org/wiki/Weighted_median).

\[4\] [G. Brys; M. Hubert; A. Struyf (November 2004). "A Robust Measure of Skewness". *Journal of Computational and Graphical Statistics*. **13** (4): 996–1017.](https://doi.org/10.1198%2F106186004X12632)

\[5\] [Donald B. Johnson; Tetsuo Mizoguchi (May 1978). "Selecting The Kth Element In X + Y And X1 + X2 +...+ Xm". *SIAM Journal on Computing*. **7** (2): 147–153.](https://doi.org/10.1137%2F0207013)

\[6\] [Medcouple implementation in Python by Jordi Gutiérrez Hermoso.](http://inversethought.com/hg/)

\[7\] [Medcouple on Wikipedia.](https://en.wikipedia.org/wiki/Medcouple)

\[8\] [David R. Bickel, Rudolf Frühwirth. "On a fast, robust estimator of the mode: Comparisons to other robust estimators with applications", *Computational Statistics & Data Analysis*, Volume 50, Issue 12, 2006, Pages 3500-3530, ISSN 0167-9473.](https://doi.org/10.1016/j.csda.2005.07.011)

%package help
Summary:	Development documents and examples for robustats
Provides:	python3-robustats-doc
%description help
# Robustats

Robustats is a Python library for high-performance computation of robust statistical estimators.

The functions that compute the robust estimators are [implemented in C](c) for speed and [called by Python](robustats).

Estimators implemented in the library:

- **Weighted Median** (temporal complexity: `O(n)`) \[1, 2, 3\]
- **Medcouple** (temporal complexity: `O(n * log(n))`) [4, 5, 6, 7]
- **Mode** (temporal complexity: `O(n * log(n))`) [8]

## How to Install

This library requires Python 3.

You can install the library using Pip.

```shell
pip install robustats
```

You can also install the library directly from GitHub using the following command.

```shell
pip install -e 'git+https://github.com/FilippoBovo/robustats.git#egg=robustats'
```

Otherwise, you may clone the repository, and install and test the Robustats package in the following way.

```shell
git clone https://github.com/FilippoBovo/robustats.git
cd robustats
pip install -e .
python -m unittest
```

## How to Use

This is an example of how to use the Robustats library in Python.

```python
import numpy as np
import robustats


# Weighted Median
x = np.array([1.1, 5.3, 3.7, 2.1, 7.0, 9.9])
weights = np.array([1.1, 0.4, 2.1, 3.5, 1.2, 0.8])

weighted_median = robustats.weighted_median(x, weights)

print("The weighted median is {}".format(weighted_median))
# Output: The weighted median is 2.1


# Medcouple
x = np.array([0.2, 0.17, 0.08, 0.16, 0.88, 0.86, 0.09, 0.54, 0.27, 0.14])

medcouple = robustats.medcouple(x)

print("The medcouple is {}".format(medcouple))
# Output: The medcouple is 0.7749999999999999


# Mode
x = np.array([1., 2., 2., 3., 3., 3., 4., 4., 5.])

mode = robustats.mode(x)

print("The mode is {}".format(mode))
# Output: The mode is 3.0
```

## How to Contribute

If you wish to contribute to this library, please follow the patterns and style of the rest of the code.

Moreover, install the Git hooks.

```shell
git config core.hooksPath .githooks
```



Tips:

- In C, use `malloc` to allocate memory to the heap, instead of creating arrays that allocate memory to the stack, as with large array we would incur in a [segmentation fault due to stack overflow](https://stackoverflow.com/a/1847886).
- Avoid recursions where possible to limit the spatial complexity of the problem. In place of recursions, use loops.

## References

\[1\] [Cormen, Leiserson, Rivest, Stein - Introduction to Algorithms (3rd Edition)](https://books.google.co.uk/books?id=aefUBQAAQBAJ&lpg=PR5&ots=dN8rWuZQaW&dq=Cormen%2C%20Leiserson%2C%20Rivest%2C%20Stein%20-%20Introduction%20to%20Algorithms&lr&pg=PP1#v=onepage&q&f=false).

\[2\] [Cormen - Introduction to Algorithms (3rd Edition) - Instructor's Manual](https://cdn.manesht.ir/19908/Introduction%20to%20Algorithms.pdf).

\[3\] [Weighted median on Wikipedia](https://en.wikipedia.org/wiki/Weighted_median).

\[4\] [G. Brys; M. Hubert; A. Struyf (November 2004). "A Robust Measure of Skewness". *Journal of Computational and Graphical Statistics*. **13** (4): 996–1017.](https://doi.org/10.1198%2F106186004X12632)

\[5\] [Donald B. Johnson; Tetsuo Mizoguchi (May 1978). "Selecting The Kth Element In X + Y And X1 + X2 +...+ Xm". *SIAM Journal on Computing*. **7** (2): 147–153.](https://doi.org/10.1137%2F0207013)

\[6\] [Medcouple implementation in Python by Jordi Gutiérrez Hermoso.](http://inversethought.com/hg/)

\[7\] [Medcouple on Wikipedia.](https://en.wikipedia.org/wiki/Medcouple)

\[8\] [David R. Bickel, Rudolf Frühwirth. "On a fast, robust estimator of the mode: Comparisons to other robust estimators with applications", *Computational Statistics & Data Analysis*, Volume 50, Issue 12, 2006, Pages 3500-3530, ISSN 0167-9473.](https://doi.org/10.1016/j.csda.2005.07.011)

%prep
%autosetup -n robustats-0.1.7

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-robustats -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Tue Apr 25 2023 Python_Bot <Python_Bot@openeuler.org> - 0.1.7-1
- Package Spec generated