diff options
| author | CoprDistGit <infra@openeuler.org> | 2023-05-10 05:38:35 +0000 |
|---|---|---|
| committer | CoprDistGit <infra@openeuler.org> | 2023-05-10 05:38:35 +0000 |
| commit | 572a04cecec3faff8c8d8449463c6a959d48afae (patch) | |
| tree | ac286855f556157a82d8c1cc0f55d7caa7ce67bd | |
| parent | 7683554592d8e35d3902e0a413d24dbcc6c38c9e (diff) | |
automatic import of python-rollingrankopeneuler20.03
| -rw-r--r-- | .gitignore | 1 | ||||
| -rw-r--r-- | python-rollingrank.spec | 318 | ||||
| -rw-r--r-- | sources | 1 |
3 files changed, 320 insertions, 0 deletions
@@ -0,0 +1 @@ +/rollingrank-0.3.1.tar.gz diff --git a/python-rollingrank.spec b/python-rollingrank.spec new file mode 100644 index 0000000..336063e --- /dev/null +++ b/python-rollingrank.spec @@ -0,0 +1,318 @@ +%global _empty_manifest_terminate_build 0 +Name: python-rollingrank +Version: 0.3.1 +Release: 1 +Summary: fast rolling rank for numpy +License: MIT +URL: https://github.com/contribu/rollingrank +Source0: https://mirrors.nju.edu.cn/pypi/web/packages/17/11/2a89a4b323f14ba51227b52e2fd12b10bdb6144d225a5cd84eeca1273f4d/rollingrank-0.3.1.tar.gz +BuildArch: noarch + + +%description +## rollingrank + +rollingrank is a fast implementation of rolling rank transformation (described as the following code). + +```python +import pandas as pd + +# x is numpy array +def rollingrank(x, window=None): + def to_rank(x): + # result[i] is the rank of x[i] in x + return np.sum(np.less(x, x[-1])) + return pd.Series(x).rolling(window).apply(to_rank).values +``` + +## Motivation + +Rolling rank is a good tool to create features for time series prediction. +However, rolling rank was not easy to use in python. +There were no exact methods to do it. +The simple implementation using pandas and numpy is too slow. + +## Performance + +|Implementation|Complexity| +|:-:|:-:| +|rollingrank|O(n * log(w))| +|pandas rolling + numpy|O(n * w)| + +n: input length +w: rolling window size + +## Install + +```bash +pip install rollingrank +``` + +## Example + +```python +import numpy as np +import rollingrank + +x = np.array([0.1, 0.2, 0.3, 0.25, 0.1, 0.2, 0.3]) +y = rollingrank.rollingrank(x, window=3) +print(y) +# [nan nan 2. 1. 0. 1. 2.] + +y = rollingrank.rollingrank(x, window=3, pct=True) +print(y) +# [nan nan 1. 0.5 0. 0.5 1. ] +``` + +## rci + +RCI is also implemented because fast implementation is not found. + +https://docs.anychart.com/Stock_Charts/Technical_Indicators/Mathematical_Description#rank_correlation_index + +## Kaggle Example + +https://www.kaggle.com/bakuage/rollingrank-example + +## Development + +test + +```bash +python -m unittest discover tests +``` + +build/upload + +```bash +python setup.py sdist +twine upload --repository pypitest dist/* +twine upload --repository pypi dist/* +``` + +## TODO + +- support axis + +%package -n python3-rollingrank +Summary: fast rolling rank for numpy +Provides: python-rollingrank +BuildRequires: python3-devel +BuildRequires: python3-setuptools +BuildRequires: python3-pip +%description -n python3-rollingrank +## rollingrank + +rollingrank is a fast implementation of rolling rank transformation (described as the following code). + +```python +import pandas as pd + +# x is numpy array +def rollingrank(x, window=None): + def to_rank(x): + # result[i] is the rank of x[i] in x + return np.sum(np.less(x, x[-1])) + return pd.Series(x).rolling(window).apply(to_rank).values +``` + +## Motivation + +Rolling rank is a good tool to create features for time series prediction. +However, rolling rank was not easy to use in python. +There were no exact methods to do it. +The simple implementation using pandas and numpy is too slow. + +## Performance + +|Implementation|Complexity| +|:-:|:-:| +|rollingrank|O(n * log(w))| +|pandas rolling + numpy|O(n * w)| + +n: input length +w: rolling window size + +## Install + +```bash +pip install rollingrank +``` + +## Example + +```python +import numpy as np +import rollingrank + +x = np.array([0.1, 0.2, 0.3, 0.25, 0.1, 0.2, 0.3]) +y = rollingrank.rollingrank(x, window=3) +print(y) +# [nan nan 2. 1. 0. 1. 2.] + +y = rollingrank.rollingrank(x, window=3, pct=True) +print(y) +# [nan nan 1. 0.5 0. 0.5 1. ] +``` + +## rci + +RCI is also implemented because fast implementation is not found. + +https://docs.anychart.com/Stock_Charts/Technical_Indicators/Mathematical_Description#rank_correlation_index + +## Kaggle Example + +https://www.kaggle.com/bakuage/rollingrank-example + +## Development + +test + +```bash +python -m unittest discover tests +``` + +build/upload + +```bash +python setup.py sdist +twine upload --repository pypitest dist/* +twine upload --repository pypi dist/* +``` + +## TODO + +- support axis + +%package help +Summary: Development documents and examples for rollingrank +Provides: python3-rollingrank-doc +%description help +## rollingrank + +rollingrank is a fast implementation of rolling rank transformation (described as the following code). + +```python +import pandas as pd + +# x is numpy array +def rollingrank(x, window=None): + def to_rank(x): + # result[i] is the rank of x[i] in x + return np.sum(np.less(x, x[-1])) + return pd.Series(x).rolling(window).apply(to_rank).values +``` + +## Motivation + +Rolling rank is a good tool to create features for time series prediction. +However, rolling rank was not easy to use in python. +There were no exact methods to do it. +The simple implementation using pandas and numpy is too slow. + +## Performance + +|Implementation|Complexity| +|:-:|:-:| +|rollingrank|O(n * log(w))| +|pandas rolling + numpy|O(n * w)| + +n: input length +w: rolling window size + +## Install + +```bash +pip install rollingrank +``` + +## Example + +```python +import numpy as np +import rollingrank + +x = np.array([0.1, 0.2, 0.3, 0.25, 0.1, 0.2, 0.3]) +y = rollingrank.rollingrank(x, window=3) +print(y) +# [nan nan 2. 1. 0. 1. 2.] + +y = rollingrank.rollingrank(x, window=3, pct=True) +print(y) +# [nan nan 1. 0.5 0. 0.5 1. ] +``` + +## rci + +RCI is also implemented because fast implementation is not found. + +https://docs.anychart.com/Stock_Charts/Technical_Indicators/Mathematical_Description#rank_correlation_index + +## Kaggle Example + +https://www.kaggle.com/bakuage/rollingrank-example + +## Development + +test + +```bash +python -m unittest discover tests +``` + +build/upload + +```bash +python setup.py sdist +twine upload --repository pypitest dist/* +twine upload --repository pypi dist/* +``` + +## TODO + +- support axis + +%prep +%autosetup -n rollingrank-0.3.1 + +%build +%py3_build + +%install +%py3_install +install -d -m755 %{buildroot}/%{_pkgdocdir} +if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi +if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi +if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi +if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi +pushd %{buildroot} +if [ -d usr/lib ]; then + find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/lib64 ]; then + find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/bin ]; then + find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/sbin ]; then + find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst +fi +touch doclist.lst +if [ -d usr/share/man ]; then + find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst +fi +popd +mv %{buildroot}/filelist.lst . +mv %{buildroot}/doclist.lst . + +%files -n python3-rollingrank -f filelist.lst +%dir %{python3_sitelib}/* + +%files help -f doclist.lst +%{_docdir}/* + +%changelog +* Wed May 10 2023 Python_Bot <Python_Bot@openeuler.org> - 0.3.1-1 +- Package Spec generated @@ -0,0 +1 @@ +638ab931a01f311bd90d041d3e291791 rollingrank-0.3.1.tar.gz |
