1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
|
%global _empty_manifest_terminate_build 0
Name: python-ruffus
Version: 2.8.4
Release: 1
Summary: Light-weight Python Computational Pipeline Management
License: MIT
URL: http://www.ruffus.org.uk
Source0: https://mirrors.nju.edu.cn/pypi/web/packages/3b/d1/154a08615b33bb66c37fa998490a811870355331b696140f125983890efa/ruffus-2.8.4.tar.gz
BuildArch: noarch
%description
***************************************
Overview
***************************************
The Ruffus module is a lightweight way to add support
for running computational pipelines.
Computational pipelines are often conceptually quite simple, especially
if we breakdown the process into simple stages, or separate **tasks**.
Each stage or **task** in a computational pipeline is represented by a python function
Each python function can be called in parallel to run multiple **jobs**.
Ruffus was originally designed for use in bioinformatics to analyse multiple genome
data sets.
***************************************
Documentation
***************************************
Ruffus documentation can be found `here <http://www.ruffus.org.uk>`__ ,
with `download notes <http://www.ruffus.org.uk/installation.html>`__ ,
a `tutorial <http://www.ruffus.org.uk/tutorials/new_tutorial/introduction.html>`__ and
an `in-depth manual <http://www.ruffus.org.uk/tutorials/new_tutorial/manual_contents.html>`__ .
***************************************
Background
***************************************
The purpose of a pipeline is to determine automatically which parts of a multi-stage
process needs to be run and in what order in order to reach an objective ("targets")
Computational pipelines, especially for analysing large scientific datasets are
in widespread use.
However, even a conceptually simple series of steps can be difficult to set up and
maintain.
***************************************
Design
***************************************
The ruffus module has the following design goals:
* Lightweight
* Scalable / Flexible / Powerful
* Standard Python
* Unintrusive
* As simple as possible
***************************************
Features
***************************************
Automatic support for
* Managing dependencies
* Parallel jobs, including dispatching work to computational clusters
* Re-starting from arbitrary points, especially after errors (checkpointing)
* Display of the pipeline as a flowchart
* Managing complex pipeline topologies
***************************************
A Simple example
***************************************
Use the **@follows(...)** python decorator before the function definitions::
from ruffus import *
import sys
def first_task():
print "First task"
@follows(first_task)
def second_task():
print "Second task"
@follows(second_task)
def final_task():
print "Final task"
the ``@follows`` decorator indicate that the ``first_task`` function precedes ``second_task`` in
the pipeline.
The canonical Ruffus decorator is ``@transform`` which **transforms** data flowing down a
computational pipeline from one stage to teh next.
********
Usage
********
Each stage or **task** in a computational pipeline is represented by a python function
Each python function can be called in parallel to run multiple **jobs**.
1. Import module::
import ruffus
1. Annotate functions with python decorators
2. Print dependency graph if you necessary
- For a graphical flowchart in ``jpg``, ``svg``, ``dot``, ``png``, ``ps``, ``gif`` formats::
pipeline_printout_graph ("flowchart.svg")
This requires ``dot`` to be installed
- For a text printout of all jobs ::
pipeline_printout(sys.stdout)
3. Run the pipeline::
pipeline_run()
%package -n python3-ruffus
Summary: Light-weight Python Computational Pipeline Management
Provides: python-ruffus
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-ruffus
***************************************
Overview
***************************************
The Ruffus module is a lightweight way to add support
for running computational pipelines.
Computational pipelines are often conceptually quite simple, especially
if we breakdown the process into simple stages, or separate **tasks**.
Each stage or **task** in a computational pipeline is represented by a python function
Each python function can be called in parallel to run multiple **jobs**.
Ruffus was originally designed for use in bioinformatics to analyse multiple genome
data sets.
***************************************
Documentation
***************************************
Ruffus documentation can be found `here <http://www.ruffus.org.uk>`__ ,
with `download notes <http://www.ruffus.org.uk/installation.html>`__ ,
a `tutorial <http://www.ruffus.org.uk/tutorials/new_tutorial/introduction.html>`__ and
an `in-depth manual <http://www.ruffus.org.uk/tutorials/new_tutorial/manual_contents.html>`__ .
***************************************
Background
***************************************
The purpose of a pipeline is to determine automatically which parts of a multi-stage
process needs to be run and in what order in order to reach an objective ("targets")
Computational pipelines, especially for analysing large scientific datasets are
in widespread use.
However, even a conceptually simple series of steps can be difficult to set up and
maintain.
***************************************
Design
***************************************
The ruffus module has the following design goals:
* Lightweight
* Scalable / Flexible / Powerful
* Standard Python
* Unintrusive
* As simple as possible
***************************************
Features
***************************************
Automatic support for
* Managing dependencies
* Parallel jobs, including dispatching work to computational clusters
* Re-starting from arbitrary points, especially after errors (checkpointing)
* Display of the pipeline as a flowchart
* Managing complex pipeline topologies
***************************************
A Simple example
***************************************
Use the **@follows(...)** python decorator before the function definitions::
from ruffus import *
import sys
def first_task():
print "First task"
@follows(first_task)
def second_task():
print "Second task"
@follows(second_task)
def final_task():
print "Final task"
the ``@follows`` decorator indicate that the ``first_task`` function precedes ``second_task`` in
the pipeline.
The canonical Ruffus decorator is ``@transform`` which **transforms** data flowing down a
computational pipeline from one stage to teh next.
********
Usage
********
Each stage or **task** in a computational pipeline is represented by a python function
Each python function can be called in parallel to run multiple **jobs**.
1. Import module::
import ruffus
1. Annotate functions with python decorators
2. Print dependency graph if you necessary
- For a graphical flowchart in ``jpg``, ``svg``, ``dot``, ``png``, ``ps``, ``gif`` formats::
pipeline_printout_graph ("flowchart.svg")
This requires ``dot`` to be installed
- For a text printout of all jobs ::
pipeline_printout(sys.stdout)
3. Run the pipeline::
pipeline_run()
%package help
Summary: Development documents and examples for ruffus
Provides: python3-ruffus-doc
%description help
***************************************
Overview
***************************************
The Ruffus module is a lightweight way to add support
for running computational pipelines.
Computational pipelines are often conceptually quite simple, especially
if we breakdown the process into simple stages, or separate **tasks**.
Each stage or **task** in a computational pipeline is represented by a python function
Each python function can be called in parallel to run multiple **jobs**.
Ruffus was originally designed for use in bioinformatics to analyse multiple genome
data sets.
***************************************
Documentation
***************************************
Ruffus documentation can be found `here <http://www.ruffus.org.uk>`__ ,
with `download notes <http://www.ruffus.org.uk/installation.html>`__ ,
a `tutorial <http://www.ruffus.org.uk/tutorials/new_tutorial/introduction.html>`__ and
an `in-depth manual <http://www.ruffus.org.uk/tutorials/new_tutorial/manual_contents.html>`__ .
***************************************
Background
***************************************
The purpose of a pipeline is to determine automatically which parts of a multi-stage
process needs to be run and in what order in order to reach an objective ("targets")
Computational pipelines, especially for analysing large scientific datasets are
in widespread use.
However, even a conceptually simple series of steps can be difficult to set up and
maintain.
***************************************
Design
***************************************
The ruffus module has the following design goals:
* Lightweight
* Scalable / Flexible / Powerful
* Standard Python
* Unintrusive
* As simple as possible
***************************************
Features
***************************************
Automatic support for
* Managing dependencies
* Parallel jobs, including dispatching work to computational clusters
* Re-starting from arbitrary points, especially after errors (checkpointing)
* Display of the pipeline as a flowchart
* Managing complex pipeline topologies
***************************************
A Simple example
***************************************
Use the **@follows(...)** python decorator before the function definitions::
from ruffus import *
import sys
def first_task():
print "First task"
@follows(first_task)
def second_task():
print "Second task"
@follows(second_task)
def final_task():
print "Final task"
the ``@follows`` decorator indicate that the ``first_task`` function precedes ``second_task`` in
the pipeline.
The canonical Ruffus decorator is ``@transform`` which **transforms** data flowing down a
computational pipeline from one stage to teh next.
********
Usage
********
Each stage or **task** in a computational pipeline is represented by a python function
Each python function can be called in parallel to run multiple **jobs**.
1. Import module::
import ruffus
1. Annotate functions with python decorators
2. Print dependency graph if you necessary
- For a graphical flowchart in ``jpg``, ``svg``, ``dot``, ``png``, ``ps``, ``gif`` formats::
pipeline_printout_graph ("flowchart.svg")
This requires ``dot`` to be installed
- For a text printout of all jobs ::
pipeline_printout(sys.stdout)
3. Run the pipeline::
pipeline_run()
%prep
%autosetup -n ruffus-2.8.4
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-ruffus -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Fri Apr 21 2023 Python_Bot <Python_Bot@openeuler.org> - 2.8.4-1
- Package Spec generated
|