summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--.gitignore1
-rw-r--r--python-samitorch.spec567
-rw-r--r--sources1
3 files changed, 569 insertions, 0 deletions
diff --git a/.gitignore b/.gitignore
index e69de29..5cb7f18 100644
--- a/.gitignore
+++ b/.gitignore
@@ -0,0 +1 @@
+/SAMITorch-0.2.7.tar.gz
diff --git a/python-samitorch.spec b/python-samitorch.spec
new file mode 100644
index 0000000..368665b
--- /dev/null
+++ b/python-samitorch.spec
@@ -0,0 +1,567 @@
+%global _empty_manifest_terminate_build 0
+Name: python-SAMITorch
+Version: 0.2.7
+Release: 1
+Summary: Deep Learning Framework For Medical Image Analysis
+License: MIT
+URL: https://pypi.org/project/SAMITorch/
+Source0: https://mirrors.nju.edu.cn/pypi/web/packages/63/1e/ce6bfbc60593f8be90c3ed066e4ab01e21672f41b85f3fcacf09a55f09d4/SAMITorch-0.2.7.tar.gz
+BuildArch: noarch
+
+
+%description
+# <img src="/icons/artificial-intelligence.png" width="60" vertical-align="bottom"> SAMITorch
+
+## Welcome to SAMITorch
+
+[![Build Status](https://travis-ci.com/sami-ets/SAMITorch.svg?branch=master)](https://travis-ci.com/sami-ets/SAMITorch)
+![GitHub All Releases](https://img.shields.io/github/downloads/sami-ets/SAMITorch/total.svg)
+![GitHub issues](https://img.shields.io/github/issues/sami-ets/SAMITorch.svg)
+![GitHub](https://img.shields.io/github/license/sami-ets/SAMITorch.svg)
+![GitHub contributors](https://img.shields.io/github/contributors/sami-ets/SAMITorch.svg)
+
+
+SAMITorch is a deep learning framework for *Shape Analysis in Medical Imaging* laboratory of [École de technologie supérieure](https://www.etsmtl.ca/) using [PyTorch](https://github.com/pytorch) library.
+It implements an extensive set of loaders, transformers, models and data sets suited for deep learning in medical imaging.
+Our objective is to build a tested, standard framework for quickly producing results in deep learning reasearch applied to medical imaging.
+
+# Table Of Contents
+
+- [Authors](#authors)
+- [References](#references)
+- [Project architecture](#project-architecture)
+ - [Folder structure](#folder-structure)
+ - [Main Components](#main-components)
+ - [Models](#models)
+ - [Transformers](#transformers)
+ - [Configuration](#configs)
+ - [Main](#main)
+ - [Contributing](#contributing)
+ - [Branch naming](#branch-naming)
+ - [Commits syntax](#commits-syntax)
+ - [Acknowledgments](#acknowledgments)
+
+
+## Authors
+
+* Pierre-Luc Delisle - [pldelisle](https://github.com/pldelisle)
+* Benoit Anctil-Robitaille - [banctilrobitaille](https://github.com/banctilrobitaille)
+
+## References
+
+#### Segmentation
+```
+@article{RN10,
+ author = {Çiçek, Özgün and Abdulkadir, Ahmed and Lienkamp, Soeren S. and Brox, Thomas and Ronneberger, Olaf},
+ title = {3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation},
+ journal = {eprint arXiv:1606.06650},
+ pages = {arXiv:1606.06650},
+ url = {https://ui.adsabs.harvard.edu/\#abs/2016arXiv160606650C},
+ year = {2016},
+ type = {Journal Article}
+}
+```
+
+#### Classification
+```
+@inproceedings{RN12,
+ author = {He, K. and Zhang, X. and Ren, S. and Sun, J.},
+ title = {Deep Residual Learning for Image Recognition},
+ booktitle = {2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
+ pages = {770-778},
+ ISBN = {1063-6919},
+ DOI = {10.1109/CVPR.2016.90},
+ type = {Conference Proceedings}
+}
+```
+
+#### Diffusion imaging
+
+#### Application
+
+
+## Setup
+> pip install -r [path/to/requirements.txt]
+> python3 <main_script>.py
+
+
+## Project architecture
+### Folder structure
+
+```
+── samitorch
+| ├── configs - This folder contains the YAML configuration files.
+| │ ├── configurations.py - This file contains the definitions of different configuration classes.
+| │ |── resnet3d.yaml - Standard ResNet 3D configuration file and model definition.
+| │ └── unet3d.yaml - Standard UNet 3D configuration file and model definition.
+| |
+| ├── initializers - This folder contains custom layer/op initializers.
+| | └── initializers.py
+| │
+| ├── inputs - This folder contains anything relative to inputs to a network.
+| | |── batch.py - Contains Batch definition object used in training.
+| | |── datasets.py - Contains basic dataset definition for classification and segmentation.
+| | |── images.py - Contains Enums for various methods.
+| | |── patch.py - Contains Patch definition used in segmentation problems.
+| | |── sample.py - Contains a Sample object.
+| | |── transformers.py - Contains a series of common transformations.
+| | └── utils.py - Contains various utilitary methods.
+| |
+| ├── models - This folder contains any standard and tested deep learning models.
+| │ |── layers.py - Contains layer definitions.
+| | |── resnet3d.py - Contains a standard ResNet 3D model.
+| | └── unet3d.py - Contains a standard UNet 3D model.
+| |
+| |── parsers - This folder contains parsers definition used in SAMITorch.
+| |
+| ├── preprocessing - This folder contains anything relative to input preprocessing, and scripts that must be executed prior training.
+| |
+| └── utils - This folder contains any utils you may need.
+| |── files.py - Contains file related utils methods.
+| |── slice_builder.py - Contains an object to build slices out of a data sets (for image segmentation).
+| └── tensors.py - Contains tensor related utils methods.
+── tests - Folder containing unit tests of the standard framework api and functions.
+
+```
+
+### Main components
+(To be documented shortly...)
+#### Models
+
+#### Transformers
+
+#### Configs
+
+#### Main
+
+## Contributing
+If you find a bug or have an idea for an improvement, please first have a look at our [contribution guideline](https://github.com/sami-ets/SAMITorch/blob/master/CONTRIBUTING.md). Then,
+- [X] Create a branch by feature and/or bug fix
+- [X] Get the code
+- [X] Commit and push
+- [X] Create a pull request
+
+## Branch naming
+
+| Instance | Branch | Description, Instructions, Notes |
+|-----------------|-----------------------------------------------------|----------------------------------------------------|
+| Stable | stable | Accepts merges from Development and Hotfixes |
+| Development | dev/ [Short description] [Issue number] | Accepts merges from Features / Issues and Hotfixes |
+| Features/Issues | feature/ [Short feature description] [Issue number] | Always branch off HEAD or dev/ |
+| Hotfix | fix/ [Short feature description] [Issue number] | Always branch off Stable |
+
+## Commits syntax
+
+##### Adding code:
+> \+ Added [Short Description] [Issue Number]
+
+##### Deleting code:
+> \- Deleted [Short Description] [Issue Number]
+
+##### Modifying code:
+> \* Changed [Short Description] [Issue Number]
+
+##### Merging branches:
+> Y Merged [Short Description]
+
+## To build documentation
+
+SAMITorch uses Sphinx Documentation. To build doc, simply execute the following:
+
+> cd docs
+> sphinx-build -b html source build
+
+
+## Acknowledgment
+Thanks to [École de technologie supérieure](https://www.etsmtl.ca/), [Hervé Lombaert](https://profs.etsmtl.ca/hlombaert/) and [Christian Desrosiers](https://www.etsmtl.ca/Professeurs/cdesrosiers/Accueil) for providing us a lab and helping us in our research activities.
+
+Icons made by <a href="http://www.flaticon.com/authors/freepik" title="Freepik">Freepik</a> from <a href="http://www.flaticon.com" title="Flaticon">www.flaticon.com</a> is licensed by <a href="http://creativecommons.org/licenses/by/3.0/" title="Creative Commons BY 3.0" target="_blank">CC 3.0 BY</a>
+
+%package -n python3-SAMITorch
+Summary: Deep Learning Framework For Medical Image Analysis
+Provides: python-SAMITorch
+BuildRequires: python3-devel
+BuildRequires: python3-setuptools
+BuildRequires: python3-pip
+%description -n python3-SAMITorch
+# <img src="/icons/artificial-intelligence.png" width="60" vertical-align="bottom"> SAMITorch
+
+## Welcome to SAMITorch
+
+[![Build Status](https://travis-ci.com/sami-ets/SAMITorch.svg?branch=master)](https://travis-ci.com/sami-ets/SAMITorch)
+![GitHub All Releases](https://img.shields.io/github/downloads/sami-ets/SAMITorch/total.svg)
+![GitHub issues](https://img.shields.io/github/issues/sami-ets/SAMITorch.svg)
+![GitHub](https://img.shields.io/github/license/sami-ets/SAMITorch.svg)
+![GitHub contributors](https://img.shields.io/github/contributors/sami-ets/SAMITorch.svg)
+
+
+SAMITorch is a deep learning framework for *Shape Analysis in Medical Imaging* laboratory of [École de technologie supérieure](https://www.etsmtl.ca/) using [PyTorch](https://github.com/pytorch) library.
+It implements an extensive set of loaders, transformers, models and data sets suited for deep learning in medical imaging.
+Our objective is to build a tested, standard framework for quickly producing results in deep learning reasearch applied to medical imaging.
+
+# Table Of Contents
+
+- [Authors](#authors)
+- [References](#references)
+- [Project architecture](#project-architecture)
+ - [Folder structure](#folder-structure)
+ - [Main Components](#main-components)
+ - [Models](#models)
+ - [Transformers](#transformers)
+ - [Configuration](#configs)
+ - [Main](#main)
+ - [Contributing](#contributing)
+ - [Branch naming](#branch-naming)
+ - [Commits syntax](#commits-syntax)
+ - [Acknowledgments](#acknowledgments)
+
+
+## Authors
+
+* Pierre-Luc Delisle - [pldelisle](https://github.com/pldelisle)
+* Benoit Anctil-Robitaille - [banctilrobitaille](https://github.com/banctilrobitaille)
+
+## References
+
+#### Segmentation
+```
+@article{RN10,
+ author = {Çiçek, Özgün and Abdulkadir, Ahmed and Lienkamp, Soeren S. and Brox, Thomas and Ronneberger, Olaf},
+ title = {3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation},
+ journal = {eprint arXiv:1606.06650},
+ pages = {arXiv:1606.06650},
+ url = {https://ui.adsabs.harvard.edu/\#abs/2016arXiv160606650C},
+ year = {2016},
+ type = {Journal Article}
+}
+```
+
+#### Classification
+```
+@inproceedings{RN12,
+ author = {He, K. and Zhang, X. and Ren, S. and Sun, J.},
+ title = {Deep Residual Learning for Image Recognition},
+ booktitle = {2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
+ pages = {770-778},
+ ISBN = {1063-6919},
+ DOI = {10.1109/CVPR.2016.90},
+ type = {Conference Proceedings}
+}
+```
+
+#### Diffusion imaging
+
+#### Application
+
+
+## Setup
+> pip install -r [path/to/requirements.txt]
+> python3 <main_script>.py
+
+
+## Project architecture
+### Folder structure
+
+```
+── samitorch
+| ├── configs - This folder contains the YAML configuration files.
+| │ ├── configurations.py - This file contains the definitions of different configuration classes.
+| │ |── resnet3d.yaml - Standard ResNet 3D configuration file and model definition.
+| │ └── unet3d.yaml - Standard UNet 3D configuration file and model definition.
+| |
+| ├── initializers - This folder contains custom layer/op initializers.
+| | └── initializers.py
+| │
+| ├── inputs - This folder contains anything relative to inputs to a network.
+| | |── batch.py - Contains Batch definition object used in training.
+| | |── datasets.py - Contains basic dataset definition for classification and segmentation.
+| | |── images.py - Contains Enums for various methods.
+| | |── patch.py - Contains Patch definition used in segmentation problems.
+| | |── sample.py - Contains a Sample object.
+| | |── transformers.py - Contains a series of common transformations.
+| | └── utils.py - Contains various utilitary methods.
+| |
+| ├── models - This folder contains any standard and tested deep learning models.
+| │ |── layers.py - Contains layer definitions.
+| | |── resnet3d.py - Contains a standard ResNet 3D model.
+| | └── unet3d.py - Contains a standard UNet 3D model.
+| |
+| |── parsers - This folder contains parsers definition used in SAMITorch.
+| |
+| ├── preprocessing - This folder contains anything relative to input preprocessing, and scripts that must be executed prior training.
+| |
+| └── utils - This folder contains any utils you may need.
+| |── files.py - Contains file related utils methods.
+| |── slice_builder.py - Contains an object to build slices out of a data sets (for image segmentation).
+| └── tensors.py - Contains tensor related utils methods.
+── tests - Folder containing unit tests of the standard framework api and functions.
+
+```
+
+### Main components
+(To be documented shortly...)
+#### Models
+
+#### Transformers
+
+#### Configs
+
+#### Main
+
+## Contributing
+If you find a bug or have an idea for an improvement, please first have a look at our [contribution guideline](https://github.com/sami-ets/SAMITorch/blob/master/CONTRIBUTING.md). Then,
+- [X] Create a branch by feature and/or bug fix
+- [X] Get the code
+- [X] Commit and push
+- [X] Create a pull request
+
+## Branch naming
+
+| Instance | Branch | Description, Instructions, Notes |
+|-----------------|-----------------------------------------------------|----------------------------------------------------|
+| Stable | stable | Accepts merges from Development and Hotfixes |
+| Development | dev/ [Short description] [Issue number] | Accepts merges from Features / Issues and Hotfixes |
+| Features/Issues | feature/ [Short feature description] [Issue number] | Always branch off HEAD or dev/ |
+| Hotfix | fix/ [Short feature description] [Issue number] | Always branch off Stable |
+
+## Commits syntax
+
+##### Adding code:
+> \+ Added [Short Description] [Issue Number]
+
+##### Deleting code:
+> \- Deleted [Short Description] [Issue Number]
+
+##### Modifying code:
+> \* Changed [Short Description] [Issue Number]
+
+##### Merging branches:
+> Y Merged [Short Description]
+
+## To build documentation
+
+SAMITorch uses Sphinx Documentation. To build doc, simply execute the following:
+
+> cd docs
+> sphinx-build -b html source build
+
+
+## Acknowledgment
+Thanks to [École de technologie supérieure](https://www.etsmtl.ca/), [Hervé Lombaert](https://profs.etsmtl.ca/hlombaert/) and [Christian Desrosiers](https://www.etsmtl.ca/Professeurs/cdesrosiers/Accueil) for providing us a lab and helping us in our research activities.
+
+Icons made by <a href="http://www.flaticon.com/authors/freepik" title="Freepik">Freepik</a> from <a href="http://www.flaticon.com" title="Flaticon">www.flaticon.com</a> is licensed by <a href="http://creativecommons.org/licenses/by/3.0/" title="Creative Commons BY 3.0" target="_blank">CC 3.0 BY</a>
+
+%package help
+Summary: Development documents and examples for SAMITorch
+Provides: python3-SAMITorch-doc
+%description help
+# <img src="/icons/artificial-intelligence.png" width="60" vertical-align="bottom"> SAMITorch
+
+## Welcome to SAMITorch
+
+[![Build Status](https://travis-ci.com/sami-ets/SAMITorch.svg?branch=master)](https://travis-ci.com/sami-ets/SAMITorch)
+![GitHub All Releases](https://img.shields.io/github/downloads/sami-ets/SAMITorch/total.svg)
+![GitHub issues](https://img.shields.io/github/issues/sami-ets/SAMITorch.svg)
+![GitHub](https://img.shields.io/github/license/sami-ets/SAMITorch.svg)
+![GitHub contributors](https://img.shields.io/github/contributors/sami-ets/SAMITorch.svg)
+
+
+SAMITorch is a deep learning framework for *Shape Analysis in Medical Imaging* laboratory of [École de technologie supérieure](https://www.etsmtl.ca/) using [PyTorch](https://github.com/pytorch) library.
+It implements an extensive set of loaders, transformers, models and data sets suited for deep learning in medical imaging.
+Our objective is to build a tested, standard framework for quickly producing results in deep learning reasearch applied to medical imaging.
+
+# Table Of Contents
+
+- [Authors](#authors)
+- [References](#references)
+- [Project architecture](#project-architecture)
+ - [Folder structure](#folder-structure)
+ - [Main Components](#main-components)
+ - [Models](#models)
+ - [Transformers](#transformers)
+ - [Configuration](#configs)
+ - [Main](#main)
+ - [Contributing](#contributing)
+ - [Branch naming](#branch-naming)
+ - [Commits syntax](#commits-syntax)
+ - [Acknowledgments](#acknowledgments)
+
+
+## Authors
+
+* Pierre-Luc Delisle - [pldelisle](https://github.com/pldelisle)
+* Benoit Anctil-Robitaille - [banctilrobitaille](https://github.com/banctilrobitaille)
+
+## References
+
+#### Segmentation
+```
+@article{RN10,
+ author = {Çiçek, Özgün and Abdulkadir, Ahmed and Lienkamp, Soeren S. and Brox, Thomas and Ronneberger, Olaf},
+ title = {3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation},
+ journal = {eprint arXiv:1606.06650},
+ pages = {arXiv:1606.06650},
+ url = {https://ui.adsabs.harvard.edu/\#abs/2016arXiv160606650C},
+ year = {2016},
+ type = {Journal Article}
+}
+```
+
+#### Classification
+```
+@inproceedings{RN12,
+ author = {He, K. and Zhang, X. and Ren, S. and Sun, J.},
+ title = {Deep Residual Learning for Image Recognition},
+ booktitle = {2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
+ pages = {770-778},
+ ISBN = {1063-6919},
+ DOI = {10.1109/CVPR.2016.90},
+ type = {Conference Proceedings}
+}
+```
+
+#### Diffusion imaging
+
+#### Application
+
+
+## Setup
+> pip install -r [path/to/requirements.txt]
+> python3 <main_script>.py
+
+
+## Project architecture
+### Folder structure
+
+```
+── samitorch
+| ├── configs - This folder contains the YAML configuration files.
+| │ ├── configurations.py - This file contains the definitions of different configuration classes.
+| │ |── resnet3d.yaml - Standard ResNet 3D configuration file and model definition.
+| │ └── unet3d.yaml - Standard UNet 3D configuration file and model definition.
+| |
+| ├── initializers - This folder contains custom layer/op initializers.
+| | └── initializers.py
+| │
+| ├── inputs - This folder contains anything relative to inputs to a network.
+| | |── batch.py - Contains Batch definition object used in training.
+| | |── datasets.py - Contains basic dataset definition for classification and segmentation.
+| | |── images.py - Contains Enums for various methods.
+| | |── patch.py - Contains Patch definition used in segmentation problems.
+| | |── sample.py - Contains a Sample object.
+| | |── transformers.py - Contains a series of common transformations.
+| | └── utils.py - Contains various utilitary methods.
+| |
+| ├── models - This folder contains any standard and tested deep learning models.
+| │ |── layers.py - Contains layer definitions.
+| | |── resnet3d.py - Contains a standard ResNet 3D model.
+| | └── unet3d.py - Contains a standard UNet 3D model.
+| |
+| |── parsers - This folder contains parsers definition used in SAMITorch.
+| |
+| ├── preprocessing - This folder contains anything relative to input preprocessing, and scripts that must be executed prior training.
+| |
+| └── utils - This folder contains any utils you may need.
+| |── files.py - Contains file related utils methods.
+| |── slice_builder.py - Contains an object to build slices out of a data sets (for image segmentation).
+| └── tensors.py - Contains tensor related utils methods.
+── tests - Folder containing unit tests of the standard framework api and functions.
+
+```
+
+### Main components
+(To be documented shortly...)
+#### Models
+
+#### Transformers
+
+#### Configs
+
+#### Main
+
+## Contributing
+If you find a bug or have an idea for an improvement, please first have a look at our [contribution guideline](https://github.com/sami-ets/SAMITorch/blob/master/CONTRIBUTING.md). Then,
+- [X] Create a branch by feature and/or bug fix
+- [X] Get the code
+- [X] Commit and push
+- [X] Create a pull request
+
+## Branch naming
+
+| Instance | Branch | Description, Instructions, Notes |
+|-----------------|-----------------------------------------------------|----------------------------------------------------|
+| Stable | stable | Accepts merges from Development and Hotfixes |
+| Development | dev/ [Short description] [Issue number] | Accepts merges from Features / Issues and Hotfixes |
+| Features/Issues | feature/ [Short feature description] [Issue number] | Always branch off HEAD or dev/ |
+| Hotfix | fix/ [Short feature description] [Issue number] | Always branch off Stable |
+
+## Commits syntax
+
+##### Adding code:
+> \+ Added [Short Description] [Issue Number]
+
+##### Deleting code:
+> \- Deleted [Short Description] [Issue Number]
+
+##### Modifying code:
+> \* Changed [Short Description] [Issue Number]
+
+##### Merging branches:
+> Y Merged [Short Description]
+
+## To build documentation
+
+SAMITorch uses Sphinx Documentation. To build doc, simply execute the following:
+
+> cd docs
+> sphinx-build -b html source build
+
+
+## Acknowledgment
+Thanks to [École de technologie supérieure](https://www.etsmtl.ca/), [Hervé Lombaert](https://profs.etsmtl.ca/hlombaert/) and [Christian Desrosiers](https://www.etsmtl.ca/Professeurs/cdesrosiers/Accueil) for providing us a lab and helping us in our research activities.
+
+Icons made by <a href="http://www.flaticon.com/authors/freepik" title="Freepik">Freepik</a> from <a href="http://www.flaticon.com" title="Flaticon">www.flaticon.com</a> is licensed by <a href="http://creativecommons.org/licenses/by/3.0/" title="Creative Commons BY 3.0" target="_blank">CC 3.0 BY</a>
+
+%prep
+%autosetup -n SAMITorch-0.2.7
+
+%build
+%py3_build
+
+%install
+%py3_install
+install -d -m755 %{buildroot}/%{_pkgdocdir}
+if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
+if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
+if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
+if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
+pushd %{buildroot}
+if [ -d usr/lib ]; then
+ find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/lib64 ]; then
+ find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/bin ]; then
+ find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/sbin ]; then
+ find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+touch doclist.lst
+if [ -d usr/share/man ]; then
+ find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
+fi
+popd
+mv %{buildroot}/filelist.lst .
+mv %{buildroot}/doclist.lst .
+
+%files -n python3-SAMITorch -f filelist.lst
+%dir %{python3_sitelib}/*
+
+%files help -f doclist.lst
+%{_docdir}/*
+
+%changelog
+* Mon May 15 2023 Python_Bot <Python_Bot@openeuler.org> - 0.2.7-1
+- Package Spec generated
diff --git a/sources b/sources
new file mode 100644
index 0000000..34118d5
--- /dev/null
+++ b/sources
@@ -0,0 +1 @@
+4ef6dba35cb74eb7925a9fcf2c590a59 SAMITorch-0.2.7.tar.gz