1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
|
%global _empty_manifest_terminate_build 0
Name: python-scandeval
Version: 6.3.0
Release: 1
Summary: Evaluation of pretrained language models on mono- or multilingual Scandinavian language tasks.
License: MIT
URL: https://scandeval.github.io
Source0: https://mirrors.nju.edu.cn/pypi/web/packages/b4/cd/d7af3e26d0b1867a3bd7f280bbc003aea8c5e60e97f9a6a9425208b6c77f/ScandEval-6.3.0.tar.gz
BuildArch: noarch
Requires: python3-tqdm
Requires: python3-huggingface-hub
Requires: python3-transformers
Requires: python3-torch
Requires: python3-datasets
Requires: python3-click
Requires: python3-termcolor
Requires: python3-numpy
Requires: python3-sentencepiece
Requires: python3-protobuf
Requires: python3-seqeval
Requires: python3-pandas
Requires: python3-dotenv
Requires: python3-evaluate
Requires: python3-sacremoses
Requires: python3-jax
Requires: python3-flax
Requires: python3-jaxlib
Requires: python3-pyinfer
%description
<div align='center'>
<img src="https://raw.githubusercontent.com/saattrupdan/ScandEval/main/gfx/scandeval.png" width="517" height="217">
</div>
### Evaluation of pretrained language models on mono- or multilingual Scandinavian language tasks.
______________________________________________________________________
[](https://pypi.org/project/scandeval/)
[](https://saattrupdan.github.io/ScandEval/scandeval.html)
[](https://github.com/saattrupdan/ScandEval/blob/main/LICENSE)
[](https://github.com/saattrupdan/ScandEval/commits/main)
[](https://github.com/saattrupdan/ScandEval/tree/main/tests)
[](https://github.com/saattrupdan/ScandEval/blob/main/CODE_OF_CONDUCT.md)
## Installation
To install the package simply write the following command in your favorite terminal:
```
$ pip install scandeval
```
## Quickstart
### Benchmarking from the Command Line
The easiest way to benchmark pretrained models is via the command line interface. After
having installed the package, you can benchmark your favorite model like so:
```
$ scandeval --model-id <model-id>
```
Here `model_id` is the HuggingFace model ID, which can be found on the [HuggingFace
Hub](https://huggingface.co/models). By default this will benchmark the model on all
the datasets eligible. If you want to benchmark on a specific dataset, this can be done
via the `--dataset` flag. This will for instance evaluate the model on the
`AngryTweets` dataset:
```
$ scandeval --model-id <model-id> --dataset angry-tweets
```
We can also separate by language. To benchmark all Danish models on all Danish
datasets, say, this can be done using the `language` tag, like so:
```
$ scandeval --language da
```
Multiple models, datasets and/or languages can be specified by just attaching multiple
arguments. Here is an example with two models:
```
$ scandeval --model-id <model-id1> --model-id <model-id2> --dataset angry-tweets
```
The specific model version to use can also be added after the suffix '@':
```
$ scandeval --model-id <model-id>@<commit>
```
It can be a branch name, a tag name, or a commit id. It defaults to 'main' for latest.
See all the arguments and options available for the `scandeval` command by typing
```
$ scandeval --help
```
### Benchmarking from a Script
In a script, the syntax is similar to the command line interface. You simply initialise
an object of the `Benchmarker` class, and call this benchmark object with your favorite
models and/or datasets:
```
>>> from scandeval import Benchmarker
>>> benchmark = Benchmarker()
>>> benchmark('<model-id>')
```
To benchmark on a specific dataset, you simply specify the second argument, shown here
with the `AngryTweets` dataset again:
```
>>> benchmark('<model_id>', 'angry-tweets')
```
If you want to benchmark a subset of all the models on the Hugging Face Hub, you can
specify several parameters in the `Benchmarker` initializer to narrow down the list of
models to the ones you care about. As a simple example, the following would benchmark
all the Nynorsk models on Nynorsk datasets:
```
>>> benchmark = Benchmarker(language='nn')
>>> benchmark()
```
## Documentation
See the full documentation [here](https://saattrupdan.github.io/ScandEval/scandeval.html).
## Citing ScandEval
If you want to cite the framework then feel free to use this:
```
@article{nielsen2022scandeval,
title={ScandEval: Evaluation of language models on mono- or multilingual Scandinavian language tasks.},
author={Nielsen, Dan Saattrup},
journal={GitHub. Note: https://github.com/saattrupdan/ScandEval},
year={2022}
}
```
## Remarks
The image used in the logo has been created by the amazing [Scandinavia and the
World](https://satwcomic.com/) team. Go check them out!
## Project structure
```
.
├── .flake8
├── .github
│ └── workflows
│ ├── ci.yaml
│ └── docs.yaml
├── .gitignore
├── .pre-commit-config.yaml
├── CHANGELOG.md
├── LICENSE
├── README.md
├── gfx
│ └── scandeval.png
├── makefile
├── notebooks
├── poetry.toml
├── pyproject.toml
├── src
│ ├── scandeval
│ │ ├── __init__.py
│ │ ├── benchmark_config_factory.py
│ │ ├── benchmark_dataset.py
│ │ ├── benchmarker.py
│ │ ├── callbacks.py
│ │ ├── cli.py
│ │ ├── config.py
│ │ ├── dataset_configs.py
│ │ ├── dataset_factory.py
│ │ ├── dataset_tasks.py
│ │ ├── exceptions.py
│ │ ├── hf_hub.py
│ │ ├── languages.py
│ │ ├── model_loading.py
│ │ ├── named_entity_recognition.py
│ │ ├── question_answering.py
│ │ ├── question_answering_trainer.py
│ │ ├── scores.py
│ │ ├── sequence_classification.py
│ │ ├── speed_benchmark.py
│ │ ├── types.py
│ │ └── utils.py
│ └── scripts
│ ├── create_angry_tweets.py
│ ├── create_dane.py
│ ├── create_mim_gold_ner.py
│ ├── create_norec.py
│ ├── create_norne.py
│ ├── create_scala.py
│ ├── create_scandiqa.py
│ ├── create_suc3.py
│ ├── create_swerec.py
│ ├── create_wikiann_fo.py
│ ├── fill_in_missing_model_metadata.py
│ ├── fix_dot_env_file.py
│ ├── load_ud_pos.py
│ └── versioning.py
└── tests
├── __init__.py
├── conftest.py
├── test_benchmark_config_factory.py
├── test_benchmark_dataset.py
├── test_benchmarker.py
├── test_callbacks.py
├── test_cli.py
├── test_config.py
├── test_dataset_configs.py
├── test_dataset_factory.py
├── test_dataset_tasks.py
├── test_exceptions.py
├── test_hf_hub.py
├── test_languages.py
├── test_model_loading.py
├── test_named_entity_recognition.py
├── test_question_answering.py
├── test_question_answering_trainer.py
├── test_scores.py
├── test_sequence_classification.py
├── test_speed_benchmark.py
├── test_types.py
└── test_utils.py
```
%package -n python3-scandeval
Summary: Evaluation of pretrained language models on mono- or multilingual Scandinavian language tasks.
Provides: python-scandeval
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-scandeval
<div align='center'>
<img src="https://raw.githubusercontent.com/saattrupdan/ScandEval/main/gfx/scandeval.png" width="517" height="217">
</div>
### Evaluation of pretrained language models on mono- or multilingual Scandinavian language tasks.
______________________________________________________________________
[](https://pypi.org/project/scandeval/)
[](https://saattrupdan.github.io/ScandEval/scandeval.html)
[](https://github.com/saattrupdan/ScandEval/blob/main/LICENSE)
[](https://github.com/saattrupdan/ScandEval/commits/main)
[](https://github.com/saattrupdan/ScandEval/tree/main/tests)
[](https://github.com/saattrupdan/ScandEval/blob/main/CODE_OF_CONDUCT.md)
## Installation
To install the package simply write the following command in your favorite terminal:
```
$ pip install scandeval
```
## Quickstart
### Benchmarking from the Command Line
The easiest way to benchmark pretrained models is via the command line interface. After
having installed the package, you can benchmark your favorite model like so:
```
$ scandeval --model-id <model-id>
```
Here `model_id` is the HuggingFace model ID, which can be found on the [HuggingFace
Hub](https://huggingface.co/models). By default this will benchmark the model on all
the datasets eligible. If you want to benchmark on a specific dataset, this can be done
via the `--dataset` flag. This will for instance evaluate the model on the
`AngryTweets` dataset:
```
$ scandeval --model-id <model-id> --dataset angry-tweets
```
We can also separate by language. To benchmark all Danish models on all Danish
datasets, say, this can be done using the `language` tag, like so:
```
$ scandeval --language da
```
Multiple models, datasets and/or languages can be specified by just attaching multiple
arguments. Here is an example with two models:
```
$ scandeval --model-id <model-id1> --model-id <model-id2> --dataset angry-tweets
```
The specific model version to use can also be added after the suffix '@':
```
$ scandeval --model-id <model-id>@<commit>
```
It can be a branch name, a tag name, or a commit id. It defaults to 'main' for latest.
See all the arguments and options available for the `scandeval` command by typing
```
$ scandeval --help
```
### Benchmarking from a Script
In a script, the syntax is similar to the command line interface. You simply initialise
an object of the `Benchmarker` class, and call this benchmark object with your favorite
models and/or datasets:
```
>>> from scandeval import Benchmarker
>>> benchmark = Benchmarker()
>>> benchmark('<model-id>')
```
To benchmark on a specific dataset, you simply specify the second argument, shown here
with the `AngryTweets` dataset again:
```
>>> benchmark('<model_id>', 'angry-tweets')
```
If you want to benchmark a subset of all the models on the Hugging Face Hub, you can
specify several parameters in the `Benchmarker` initializer to narrow down the list of
models to the ones you care about. As a simple example, the following would benchmark
all the Nynorsk models on Nynorsk datasets:
```
>>> benchmark = Benchmarker(language='nn')
>>> benchmark()
```
## Documentation
See the full documentation [here](https://saattrupdan.github.io/ScandEval/scandeval.html).
## Citing ScandEval
If you want to cite the framework then feel free to use this:
```
@article{nielsen2022scandeval,
title={ScandEval: Evaluation of language models on mono- or multilingual Scandinavian language tasks.},
author={Nielsen, Dan Saattrup},
journal={GitHub. Note: https://github.com/saattrupdan/ScandEval},
year={2022}
}
```
## Remarks
The image used in the logo has been created by the amazing [Scandinavia and the
World](https://satwcomic.com/) team. Go check them out!
## Project structure
```
.
├── .flake8
├── .github
│ └── workflows
│ ├── ci.yaml
│ └── docs.yaml
├── .gitignore
├── .pre-commit-config.yaml
├── CHANGELOG.md
├── LICENSE
├── README.md
├── gfx
│ └── scandeval.png
├── makefile
├── notebooks
├── poetry.toml
├── pyproject.toml
├── src
│ ├── scandeval
│ │ ├── __init__.py
│ │ ├── benchmark_config_factory.py
│ │ ├── benchmark_dataset.py
│ │ ├── benchmarker.py
│ │ ├── callbacks.py
│ │ ├── cli.py
│ │ ├── config.py
│ │ ├── dataset_configs.py
│ │ ├── dataset_factory.py
│ │ ├── dataset_tasks.py
│ │ ├── exceptions.py
│ │ ├── hf_hub.py
│ │ ├── languages.py
│ │ ├── model_loading.py
│ │ ├── named_entity_recognition.py
│ │ ├── question_answering.py
│ │ ├── question_answering_trainer.py
│ │ ├── scores.py
│ │ ├── sequence_classification.py
│ │ ├── speed_benchmark.py
│ │ ├── types.py
│ │ └── utils.py
│ └── scripts
│ ├── create_angry_tweets.py
│ ├── create_dane.py
│ ├── create_mim_gold_ner.py
│ ├── create_norec.py
│ ├── create_norne.py
│ ├── create_scala.py
│ ├── create_scandiqa.py
│ ├── create_suc3.py
│ ├── create_swerec.py
│ ├── create_wikiann_fo.py
│ ├── fill_in_missing_model_metadata.py
│ ├── fix_dot_env_file.py
│ ├── load_ud_pos.py
│ └── versioning.py
└── tests
├── __init__.py
├── conftest.py
├── test_benchmark_config_factory.py
├── test_benchmark_dataset.py
├── test_benchmarker.py
├── test_callbacks.py
├── test_cli.py
├── test_config.py
├── test_dataset_configs.py
├── test_dataset_factory.py
├── test_dataset_tasks.py
├── test_exceptions.py
├── test_hf_hub.py
├── test_languages.py
├── test_model_loading.py
├── test_named_entity_recognition.py
├── test_question_answering.py
├── test_question_answering_trainer.py
├── test_scores.py
├── test_sequence_classification.py
├── test_speed_benchmark.py
├── test_types.py
└── test_utils.py
```
%package help
Summary: Development documents and examples for scandeval
Provides: python3-scandeval-doc
%description help
<div align='center'>
<img src="https://raw.githubusercontent.com/saattrupdan/ScandEval/main/gfx/scandeval.png" width="517" height="217">
</div>
### Evaluation of pretrained language models on mono- or multilingual Scandinavian language tasks.
______________________________________________________________________
[](https://pypi.org/project/scandeval/)
[](https://saattrupdan.github.io/ScandEval/scandeval.html)
[](https://github.com/saattrupdan/ScandEval/blob/main/LICENSE)
[](https://github.com/saattrupdan/ScandEval/commits/main)
[](https://github.com/saattrupdan/ScandEval/tree/main/tests)
[](https://github.com/saattrupdan/ScandEval/blob/main/CODE_OF_CONDUCT.md)
## Installation
To install the package simply write the following command in your favorite terminal:
```
$ pip install scandeval
```
## Quickstart
### Benchmarking from the Command Line
The easiest way to benchmark pretrained models is via the command line interface. After
having installed the package, you can benchmark your favorite model like so:
```
$ scandeval --model-id <model-id>
```
Here `model_id` is the HuggingFace model ID, which can be found on the [HuggingFace
Hub](https://huggingface.co/models). By default this will benchmark the model on all
the datasets eligible. If you want to benchmark on a specific dataset, this can be done
via the `--dataset` flag. This will for instance evaluate the model on the
`AngryTweets` dataset:
```
$ scandeval --model-id <model-id> --dataset angry-tweets
```
We can also separate by language. To benchmark all Danish models on all Danish
datasets, say, this can be done using the `language` tag, like so:
```
$ scandeval --language da
```
Multiple models, datasets and/or languages can be specified by just attaching multiple
arguments. Here is an example with two models:
```
$ scandeval --model-id <model-id1> --model-id <model-id2> --dataset angry-tweets
```
The specific model version to use can also be added after the suffix '@':
```
$ scandeval --model-id <model-id>@<commit>
```
It can be a branch name, a tag name, or a commit id. It defaults to 'main' for latest.
See all the arguments and options available for the `scandeval` command by typing
```
$ scandeval --help
```
### Benchmarking from a Script
In a script, the syntax is similar to the command line interface. You simply initialise
an object of the `Benchmarker` class, and call this benchmark object with your favorite
models and/or datasets:
```
>>> from scandeval import Benchmarker
>>> benchmark = Benchmarker()
>>> benchmark('<model-id>')
```
To benchmark on a specific dataset, you simply specify the second argument, shown here
with the `AngryTweets` dataset again:
```
>>> benchmark('<model_id>', 'angry-tweets')
```
If you want to benchmark a subset of all the models on the Hugging Face Hub, you can
specify several parameters in the `Benchmarker` initializer to narrow down the list of
models to the ones you care about. As a simple example, the following would benchmark
all the Nynorsk models on Nynorsk datasets:
```
>>> benchmark = Benchmarker(language='nn')
>>> benchmark()
```
## Documentation
See the full documentation [here](https://saattrupdan.github.io/ScandEval/scandeval.html).
## Citing ScandEval
If you want to cite the framework then feel free to use this:
```
@article{nielsen2022scandeval,
title={ScandEval: Evaluation of language models on mono- or multilingual Scandinavian language tasks.},
author={Nielsen, Dan Saattrup},
journal={GitHub. Note: https://github.com/saattrupdan/ScandEval},
year={2022}
}
```
## Remarks
The image used in the logo has been created by the amazing [Scandinavia and the
World](https://satwcomic.com/) team. Go check them out!
## Project structure
```
.
├── .flake8
├── .github
│ └── workflows
│ ├── ci.yaml
│ └── docs.yaml
├── .gitignore
├── .pre-commit-config.yaml
├── CHANGELOG.md
├── LICENSE
├── README.md
├── gfx
│ └── scandeval.png
├── makefile
├── notebooks
├── poetry.toml
├── pyproject.toml
├── src
│ ├── scandeval
│ │ ├── __init__.py
│ │ ├── benchmark_config_factory.py
│ │ ├── benchmark_dataset.py
│ │ ├── benchmarker.py
│ │ ├── callbacks.py
│ │ ├── cli.py
│ │ ├── config.py
│ │ ├── dataset_configs.py
│ │ ├── dataset_factory.py
│ │ ├── dataset_tasks.py
│ │ ├── exceptions.py
│ │ ├── hf_hub.py
│ │ ├── languages.py
│ │ ├── model_loading.py
│ │ ├── named_entity_recognition.py
│ │ ├── question_answering.py
│ │ ├── question_answering_trainer.py
│ │ ├── scores.py
│ │ ├── sequence_classification.py
│ │ ├── speed_benchmark.py
│ │ ├── types.py
│ │ └── utils.py
│ └── scripts
│ ├── create_angry_tweets.py
│ ├── create_dane.py
│ ├── create_mim_gold_ner.py
│ ├── create_norec.py
│ ├── create_norne.py
│ ├── create_scala.py
│ ├── create_scandiqa.py
│ ├── create_suc3.py
│ ├── create_swerec.py
│ ├── create_wikiann_fo.py
│ ├── fill_in_missing_model_metadata.py
│ ├── fix_dot_env_file.py
│ ├── load_ud_pos.py
│ └── versioning.py
└── tests
├── __init__.py
├── conftest.py
├── test_benchmark_config_factory.py
├── test_benchmark_dataset.py
├── test_benchmarker.py
├── test_callbacks.py
├── test_cli.py
├── test_config.py
├── test_dataset_configs.py
├── test_dataset_factory.py
├── test_dataset_tasks.py
├── test_exceptions.py
├── test_hf_hub.py
├── test_languages.py
├── test_model_loading.py
├── test_named_entity_recognition.py
├── test_question_answering.py
├── test_question_answering_trainer.py
├── test_scores.py
├── test_sequence_classification.py
├── test_speed_benchmark.py
├── test_types.py
└── test_utils.py
```
%prep
%autosetup -n scandeval-6.3.0
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-scandeval -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Fri May 05 2023 Python_Bot <Python_Bot@openeuler.org> - 6.3.0-1
- Package Spec generated
|