summaryrefslogtreecommitdiff
path: root/python-scimap.spec
blob: 666de3ff4b375b9ec0918570b5efd941f2c77eeb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
%global _empty_manifest_terminate_build 0
Name:		python-scimap
Version:	1.1.0
Release:	1
Summary:	Spatial Single-Cell Analysis Toolkit
License:	MIT
URL:		https://pypi.org/project/scimap/
Source0:	https://mirrors.nju.edu.cn/pypi/web/packages/dc/df/9fbc541d80ff9ced659aa755c8bc0107a29bb1e4d20f97928b3691bc64aa/scimap-1.1.0.tar.gz
BuildArch:	noarch

Requires:	python3-pytest
Requires:	python3-anndata
Requires:	python3-pandas
Requires:	python3-scipy
Requires:	python3-seaborn
Requires:	python3-tifffile
Requires:	python3-numpy
Requires:	python3-pytest-xvfb
Requires:	python3-matplotlib
Requires:	python3-PhenoGraph
Requires:	python3-scanpy
Requires:	python3-mkdocs
Requires:	python3-plotly
Requires:	python3-TiffFile
Requires:	python3-dask[array]
Requires:	python3-zarr
Requires:	python3-napari
Requires:	python3-numba
Requires:	python3-shapely
Requires:	python3-gensim
Requires:	python3-mkdocs-material
Requires:	python3-napari-ome-zarr
Requires:	python3-llvmlite
Requires:	python3-combat

%description
# Single-Cell Image Analysis Package
<br>

[![build: Unix-Mac-Win](https://github.com/ajitjohnson/scimap/actions/workflows/build-unix-mac-win.yml/badge.svg)](https://github.com/ajitjohnson/scimap/actions/workflows/build-unix-mac-win.yml)
[![Docs](https://github.com/ajitjohnson/scimap/actions/workflows/docs.yml/badge.svg)](https://github.com/ajitjohnson/scimap/actions/workflows/docs.yml)
[![Downloads](https://pepy.tech/badge/scimap)](https://pepy.tech/project/scimap)
[![PyPI Version](https://img.shields.io/pypi/v/scimap.svg)](https://pypi.org/project/scimap)
[![PyPI License](https://img.shields.io/pypi/l/scimap.svg)](https://pypi.org/project/scimap)
[![Gitter chat](https://badges.gitter.im/scimap_io/community.png)](https://gitter.im/scimap_io/community)
[![DOI](https://zenodo.org/badge/271099296.svg)](https://zenodo.org/badge/latestdoi/271099296)

<br>

<img src="./docs/assets/scimap_logo.jpg" style="max-width:700px;width:100%" >

<br> 

Scimap is a scalable toolkit for analyzing spatial molecular data. The underlying framework is generalizable to spatial datasets mapped to XY coordinates. The package uses the [anndata](https://anndata.readthedocs.io/en/stable/anndata.AnnData.html) framework making it easy to integrate with other popular single-cell analysis toolkits. It includes preprocessing, phenotyping, visualization, clustering, spatial analysis and differential spatial testing. The Python-based implementation efficiently deals with large datasets of millions of cells.

## Installation

We strongly recommend installing `scimap` in a fresh virtual environment.

```
# If you have conda installed
conda create --name scimap python=3.8
conda activate scimap
```

Install `scimap` directly into an activated virtual environment:

```python
$ pip install scimap
```

After installation, the package can be imported as:

```python
$ python
>>> import scimap as sm
```


## Get Started


#### Detailed documentation of `scimap` functions and tutorials are available [here](http://scimap.xyz/).

*SCIMAP* development is led by [Ajit Johnson Nirmal](https://ajitjohnson.com/) at the Laboratory of Systems Pharmacology, Harvard Medical School.

## Funding
This work is supported by the following NIH grant K99-CA256497



%package -n python3-scimap
Summary:	Spatial Single-Cell Analysis Toolkit
Provides:	python-scimap
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-scimap
# Single-Cell Image Analysis Package
<br>

[![build: Unix-Mac-Win](https://github.com/ajitjohnson/scimap/actions/workflows/build-unix-mac-win.yml/badge.svg)](https://github.com/ajitjohnson/scimap/actions/workflows/build-unix-mac-win.yml)
[![Docs](https://github.com/ajitjohnson/scimap/actions/workflows/docs.yml/badge.svg)](https://github.com/ajitjohnson/scimap/actions/workflows/docs.yml)
[![Downloads](https://pepy.tech/badge/scimap)](https://pepy.tech/project/scimap)
[![PyPI Version](https://img.shields.io/pypi/v/scimap.svg)](https://pypi.org/project/scimap)
[![PyPI License](https://img.shields.io/pypi/l/scimap.svg)](https://pypi.org/project/scimap)
[![Gitter chat](https://badges.gitter.im/scimap_io/community.png)](https://gitter.im/scimap_io/community)
[![DOI](https://zenodo.org/badge/271099296.svg)](https://zenodo.org/badge/latestdoi/271099296)

<br>

<img src="./docs/assets/scimap_logo.jpg" style="max-width:700px;width:100%" >

<br> 

Scimap is a scalable toolkit for analyzing spatial molecular data. The underlying framework is generalizable to spatial datasets mapped to XY coordinates. The package uses the [anndata](https://anndata.readthedocs.io/en/stable/anndata.AnnData.html) framework making it easy to integrate with other popular single-cell analysis toolkits. It includes preprocessing, phenotyping, visualization, clustering, spatial analysis and differential spatial testing. The Python-based implementation efficiently deals with large datasets of millions of cells.

## Installation

We strongly recommend installing `scimap` in a fresh virtual environment.

```
# If you have conda installed
conda create --name scimap python=3.8
conda activate scimap
```

Install `scimap` directly into an activated virtual environment:

```python
$ pip install scimap
```

After installation, the package can be imported as:

```python
$ python
>>> import scimap as sm
```


## Get Started


#### Detailed documentation of `scimap` functions and tutorials are available [here](http://scimap.xyz/).

*SCIMAP* development is led by [Ajit Johnson Nirmal](https://ajitjohnson.com/) at the Laboratory of Systems Pharmacology, Harvard Medical School.

## Funding
This work is supported by the following NIH grant K99-CA256497



%package help
Summary:	Development documents and examples for scimap
Provides:	python3-scimap-doc
%description help
# Single-Cell Image Analysis Package
<br>

[![build: Unix-Mac-Win](https://github.com/ajitjohnson/scimap/actions/workflows/build-unix-mac-win.yml/badge.svg)](https://github.com/ajitjohnson/scimap/actions/workflows/build-unix-mac-win.yml)
[![Docs](https://github.com/ajitjohnson/scimap/actions/workflows/docs.yml/badge.svg)](https://github.com/ajitjohnson/scimap/actions/workflows/docs.yml)
[![Downloads](https://pepy.tech/badge/scimap)](https://pepy.tech/project/scimap)
[![PyPI Version](https://img.shields.io/pypi/v/scimap.svg)](https://pypi.org/project/scimap)
[![PyPI License](https://img.shields.io/pypi/l/scimap.svg)](https://pypi.org/project/scimap)
[![Gitter chat](https://badges.gitter.im/scimap_io/community.png)](https://gitter.im/scimap_io/community)
[![DOI](https://zenodo.org/badge/271099296.svg)](https://zenodo.org/badge/latestdoi/271099296)

<br>

<img src="./docs/assets/scimap_logo.jpg" style="max-width:700px;width:100%" >

<br> 

Scimap is a scalable toolkit for analyzing spatial molecular data. The underlying framework is generalizable to spatial datasets mapped to XY coordinates. The package uses the [anndata](https://anndata.readthedocs.io/en/stable/anndata.AnnData.html) framework making it easy to integrate with other popular single-cell analysis toolkits. It includes preprocessing, phenotyping, visualization, clustering, spatial analysis and differential spatial testing. The Python-based implementation efficiently deals with large datasets of millions of cells.

## Installation

We strongly recommend installing `scimap` in a fresh virtual environment.

```
# If you have conda installed
conda create --name scimap python=3.8
conda activate scimap
```

Install `scimap` directly into an activated virtual environment:

```python
$ pip install scimap
```

After installation, the package can be imported as:

```python
$ python
>>> import scimap as sm
```


## Get Started


#### Detailed documentation of `scimap` functions and tutorials are available [here](http://scimap.xyz/).

*SCIMAP* development is led by [Ajit Johnson Nirmal](https://ajitjohnson.com/) at the Laboratory of Systems Pharmacology, Harvard Medical School.

## Funding
This work is supported by the following NIH grant K99-CA256497



%prep
%autosetup -n scimap-1.1.0

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-scimap -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Fri May 05 2023 Python_Bot <Python_Bot@openeuler.org> - 1.1.0-1
- Package Spec generated