1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
|
%global _empty_manifest_terminate_build 0
Name: python-scvelo
Version: 0.2.5
Release: 1
Summary: RNA velocity generalized through dynamical modeling
License: BSD
URL: https://github.com/theislab/scvelo
Source0: https://mirrors.aliyun.com/pypi/web/packages/d7/ca/6669ad5c6765493ea9db0fb54b766d043b09db5a146f178c106b7162d1ef/scvelo-0.2.5.tar.gz
BuildArch: noarch
Requires: python3-typing-extensions
Requires: python3-anndata
Requires: python3-scanpy
Requires: python3-loompy
Requires: python3-umap-learn
Requires: python3-numba
Requires: python3-numpy
Requires: python3-scipy
Requires: python3-pandas
Requires: python3-scikit-learn
Requires: python3-matplotlib
Requires: python3-black
Requires: python3-hnswlib
Requires: python3-hypothesis
Requires: python3-flake8
Requires: python3-isort
Requires: python3-louvain
Requires: python3-magic-impute
Requires: python3-pre-commit
Requires: python3-pybind11
Requires: python3-pytest
Requires: python3-pytest-cov
Requires: python3-igraph
Requires: python3-scanpy
Requires: python3-setuptools
Requires: python3-setuptools-scm
Requires: python3-typing-extensions
Requires: python3-importlib-metadata
Requires: python3-sphinx-rtd-theme
Requires: python3-sphinx-autodoc-typehints
Requires: python3-Jinja2
Requires: python3-ipykernel
Requires: python3-sphinx
Requires: python3-nbsphinx
Requires: python3-pybind11
Requires: python3-hnswlib
Requires: python3-igraph
Requires: python3-louvain
%description
**scVelo** is a scalable toolkit for RNA velocity analysis in single cells, based on
`Bergen et al. (Nature Biotech, 2020) <https://doi.org/10.1038/s41587-020-0591-3>`_.
RNA velocity enables the recovery of directed dynamic information by leveraging splicing kinetics.
scVelo generalizes the concept of RNA velocity
(`La Manno et al., Nature, 2018 <https://doi.org/10.1038/s41586-018-0414-6>`_)
by relaxing previously made assumptions with a stochastic and a dynamical model that solves the full
transcriptional dynamics. It thereby adapts RNA velocity to widely varying specifications such as non-stationary populations.
scVelo is compatible with scanpy_ and hosts efficient implementations of all RNA velocity models.
scVelo's key applications
^^^^^^^^^^^^^^^^^^^^^^^^^
- estimate RNA velocity to study cellular dynamics.
- identify putative driver genes and regimes of regulatory changes.
- infer a latent time to reconstruct the temporal sequence of transcriptomic events.
- estimate reaction rates of transcription, splicing and degradation.
- use statistical tests, e.g., to detect different kinetics regimes.
scVelo has, for instance, recently been used to study immune response in COVID-19
patients and dynamic processes in human lung regeneration. Find out more in this list of
`application examples <https://scholar.google.com/scholar?cites=18195185735875895912>`_.
Latest news
^^^^^^^^^^^
- Aug/2021: `Perspectives paper out in MSB <https://doi.org/10.15252/msb.202110282>`_
- Feb/2021: scVelo goes multi-core
- Dec/2020: Cover of `Nature Biotechnology <https://www.nature.com/nbt/volumes/38>`_
- Nov/2020: Talk at `Single Cell Biology <https://coursesandconferences.wellcomegenomecampus.org/our-events/single-cell-biology-2020/>`_
- Oct/2020: `Helmholtz Best Paper Award <https://twitter.com/ICBmunich/status/1318611467722199041>`_
- Oct/2020: Map cell fates with `CellRank <https://cellrank.org>`_
- Sep/2020: Talk at `Single Cell Omics <https://twitter.com/fabian_theis/status/1305621028056465412>`_
- Aug/2020: `scVelo out in Nature Biotech <https://www.helmholtz-muenchen.de/en/aktuelles/latest-news/press-information-news/article/48658/index.html>`_
References
^^^^^^^^^^
La Manno *et al.* (2018), RNA velocity of single cells, `Nature <https://doi.org/10.1038/s41586-018-0414-6>`_.
Bergen *et al.* (2020), Generalizing RNA velocity to transient cell states through dynamical modeling,
`Nature Biotech <https://doi.org/10.1038/s41587-020-0591-3>`_.
Bergen *et al.* (2021), RNA velocity - current challenges and future perspectives,
`Molecular Systems Biology <https://doi.org/10.15252/msb.202110282>`_.
Support
^^^^^^^
Found a bug or would like to see a feature implemented? Feel free to submit an
`issue <https://github.com/theislab/scvelo/issues/new/choose>`_.
Have a question or would like to start a new discussion? Head over to
`GitHub discussions <https://github.com/theislab/scvelo/discussions>`_.
In either case, you can also always send us an `email <mailto:mail@scvelo.org>`_.
Your help to improve scVelo is highly appreciated.
For further information visit `scvelo.org <https://scvelo.org>`_.
%package -n python3-scvelo
Summary: RNA velocity generalized through dynamical modeling
Provides: python-scvelo
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-scvelo
**scVelo** is a scalable toolkit for RNA velocity analysis in single cells, based on
`Bergen et al. (Nature Biotech, 2020) <https://doi.org/10.1038/s41587-020-0591-3>`_.
RNA velocity enables the recovery of directed dynamic information by leveraging splicing kinetics.
scVelo generalizes the concept of RNA velocity
(`La Manno et al., Nature, 2018 <https://doi.org/10.1038/s41586-018-0414-6>`_)
by relaxing previously made assumptions with a stochastic and a dynamical model that solves the full
transcriptional dynamics. It thereby adapts RNA velocity to widely varying specifications such as non-stationary populations.
scVelo is compatible with scanpy_ and hosts efficient implementations of all RNA velocity models.
scVelo's key applications
^^^^^^^^^^^^^^^^^^^^^^^^^
- estimate RNA velocity to study cellular dynamics.
- identify putative driver genes and regimes of regulatory changes.
- infer a latent time to reconstruct the temporal sequence of transcriptomic events.
- estimate reaction rates of transcription, splicing and degradation.
- use statistical tests, e.g., to detect different kinetics regimes.
scVelo has, for instance, recently been used to study immune response in COVID-19
patients and dynamic processes in human lung regeneration. Find out more in this list of
`application examples <https://scholar.google.com/scholar?cites=18195185735875895912>`_.
Latest news
^^^^^^^^^^^
- Aug/2021: `Perspectives paper out in MSB <https://doi.org/10.15252/msb.202110282>`_
- Feb/2021: scVelo goes multi-core
- Dec/2020: Cover of `Nature Biotechnology <https://www.nature.com/nbt/volumes/38>`_
- Nov/2020: Talk at `Single Cell Biology <https://coursesandconferences.wellcomegenomecampus.org/our-events/single-cell-biology-2020/>`_
- Oct/2020: `Helmholtz Best Paper Award <https://twitter.com/ICBmunich/status/1318611467722199041>`_
- Oct/2020: Map cell fates with `CellRank <https://cellrank.org>`_
- Sep/2020: Talk at `Single Cell Omics <https://twitter.com/fabian_theis/status/1305621028056465412>`_
- Aug/2020: `scVelo out in Nature Biotech <https://www.helmholtz-muenchen.de/en/aktuelles/latest-news/press-information-news/article/48658/index.html>`_
References
^^^^^^^^^^
La Manno *et al.* (2018), RNA velocity of single cells, `Nature <https://doi.org/10.1038/s41586-018-0414-6>`_.
Bergen *et al.* (2020), Generalizing RNA velocity to transient cell states through dynamical modeling,
`Nature Biotech <https://doi.org/10.1038/s41587-020-0591-3>`_.
Bergen *et al.* (2021), RNA velocity - current challenges and future perspectives,
`Molecular Systems Biology <https://doi.org/10.15252/msb.202110282>`_.
Support
^^^^^^^
Found a bug or would like to see a feature implemented? Feel free to submit an
`issue <https://github.com/theislab/scvelo/issues/new/choose>`_.
Have a question or would like to start a new discussion? Head over to
`GitHub discussions <https://github.com/theislab/scvelo/discussions>`_.
In either case, you can also always send us an `email <mailto:mail@scvelo.org>`_.
Your help to improve scVelo is highly appreciated.
For further information visit `scvelo.org <https://scvelo.org>`_.
%package help
Summary: Development documents and examples for scvelo
Provides: python3-scvelo-doc
%description help
**scVelo** is a scalable toolkit for RNA velocity analysis in single cells, based on
`Bergen et al. (Nature Biotech, 2020) <https://doi.org/10.1038/s41587-020-0591-3>`_.
RNA velocity enables the recovery of directed dynamic information by leveraging splicing kinetics.
scVelo generalizes the concept of RNA velocity
(`La Manno et al., Nature, 2018 <https://doi.org/10.1038/s41586-018-0414-6>`_)
by relaxing previously made assumptions with a stochastic and a dynamical model that solves the full
transcriptional dynamics. It thereby adapts RNA velocity to widely varying specifications such as non-stationary populations.
scVelo is compatible with scanpy_ and hosts efficient implementations of all RNA velocity models.
scVelo's key applications
^^^^^^^^^^^^^^^^^^^^^^^^^
- estimate RNA velocity to study cellular dynamics.
- identify putative driver genes and regimes of regulatory changes.
- infer a latent time to reconstruct the temporal sequence of transcriptomic events.
- estimate reaction rates of transcription, splicing and degradation.
- use statistical tests, e.g., to detect different kinetics regimes.
scVelo has, for instance, recently been used to study immune response in COVID-19
patients and dynamic processes in human lung regeneration. Find out more in this list of
`application examples <https://scholar.google.com/scholar?cites=18195185735875895912>`_.
Latest news
^^^^^^^^^^^
- Aug/2021: `Perspectives paper out in MSB <https://doi.org/10.15252/msb.202110282>`_
- Feb/2021: scVelo goes multi-core
- Dec/2020: Cover of `Nature Biotechnology <https://www.nature.com/nbt/volumes/38>`_
- Nov/2020: Talk at `Single Cell Biology <https://coursesandconferences.wellcomegenomecampus.org/our-events/single-cell-biology-2020/>`_
- Oct/2020: `Helmholtz Best Paper Award <https://twitter.com/ICBmunich/status/1318611467722199041>`_
- Oct/2020: Map cell fates with `CellRank <https://cellrank.org>`_
- Sep/2020: Talk at `Single Cell Omics <https://twitter.com/fabian_theis/status/1305621028056465412>`_
- Aug/2020: `scVelo out in Nature Biotech <https://www.helmholtz-muenchen.de/en/aktuelles/latest-news/press-information-news/article/48658/index.html>`_
References
^^^^^^^^^^
La Manno *et al.* (2018), RNA velocity of single cells, `Nature <https://doi.org/10.1038/s41586-018-0414-6>`_.
Bergen *et al.* (2020), Generalizing RNA velocity to transient cell states through dynamical modeling,
`Nature Biotech <https://doi.org/10.1038/s41587-020-0591-3>`_.
Bergen *et al.* (2021), RNA velocity - current challenges and future perspectives,
`Molecular Systems Biology <https://doi.org/10.15252/msb.202110282>`_.
Support
^^^^^^^
Found a bug or would like to see a feature implemented? Feel free to submit an
`issue <https://github.com/theislab/scvelo/issues/new/choose>`_.
Have a question or would like to start a new discussion? Head over to
`GitHub discussions <https://github.com/theislab/scvelo/discussions>`_.
In either case, you can also always send us an `email <mailto:mail@scvelo.org>`_.
Your help to improve scVelo is highly appreciated.
For further information visit `scvelo.org <https://scvelo.org>`_.
%prep
%autosetup -n scvelo-0.2.5
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "\"/%h/%f.gz\"\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-scvelo -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Thu Jun 08 2023 Python_Bot <Python_Bot@openeuler.org> - 0.2.5-1
- Package Spec generated
|