diff options
| author | CoprDistGit <infra@openeuler.org> | 2023-04-12 07:25:31 +0000 |
|---|---|---|
| committer | CoprDistGit <infra@openeuler.org> | 2023-04-12 07:25:31 +0000 |
| commit | fce60f5235d3f1c4437474d505110a244db8ecb3 (patch) | |
| tree | 05bd0550989237059a788510638f293df72caf59 | |
| parent | bd9cbc1cb8350899e49b0472798ae2071ba30af0 (diff) | |
automatic import of python-secp256k1openeuler20.03
| -rw-r--r-- | .gitignore | 1 | ||||
| -rw-r--r-- | python-secp256k1.spec | 1020 | ||||
| -rw-r--r-- | sources | 1 |
3 files changed, 1022 insertions, 0 deletions
@@ -0,0 +1 @@ +/secp256k1-0.14.0.tar.gz diff --git a/python-secp256k1.spec b/python-secp256k1.spec new file mode 100644 index 0000000..6192172 --- /dev/null +++ b/python-secp256k1.spec @@ -0,0 +1,1020 @@ +%global _empty_manifest_terminate_build 0 +Name: python-secp256k1 +Version: 0.14.0 +Release: 1 +Summary: FFI bindings to libsecp256k1 +License: MIT +URL: https://github.com/rustyrussell/secp256k1-py +Source0: https://mirrors.nju.edu.cn/pypi/web/packages/9b/41/bb668a6e4192303542d2d90c3b38d564af3c17c61bd7d4039af4f29405fe/secp256k1-0.14.0.tar.gz +BuildArch: noarch + + +%description +# secp256k1-py  + +Python FFI bindings for [libsecp256k1](https://github.com/bitcoin/secp256k1) +(an experimental and optimized C library for EC operations on curve secp256k1). + +Previously maintained by Ludvig Broberg, now at https://github.com/rustyrussell/secp256k1-py . + +## Installation + +``` +pip install secp256k1 +``` + +### Precompiled binary packages (wheels) + +Precompiled binary wheels is available for Python 2.7, 3.3, 3.4, and 3.5 on Linux. To take advantage of those you need to use pip >= 8.1.0. + +In case you don't want to use the binary packages you can prevent pip from +using them with the following command: + +``` +pip install --no-binary :all: secp256k1 +``` + + +### Installation with compilation + +If you either can't or don't want to use the binary package options described +above read on to learn what is needed to install the source pacakge. + +The library bundles its own libsecp256k1 currently, as there is no +versioning to allow us to safely determine compatibility with an +installed library, especially as we also build all the experimental +modules. + +For the bundled version to compile successfully you need to have a C compiler +as well as the development headers for `libffi` and `libgmp` installed. + +On Debian / Ubuntu for example the necessary packages are: + +* `build-essential` +* `automake` +* `pkg-config` +* `libtool` +* `libffi-dev` + +On OS X the necessary homebrew packages are: + +* `automake` +* `pkg-config` +* `libtool` +* `libffi` + + +## Command line usage + +###### Generate a private key and show the corresponding public key + +``` +$ python -m secp256k1 privkey -p + +a1455c78a922c52f391c5784f8ca1457367fa57f9d7a74fdab7d2c90ca05c02e +Public key: 02477ce3b986ab14d123d6c4167b085f4d08c1569963a0201b2ffc7d9d6086d2f3 +``` + +###### Sign a message + +``` +$ python -m secp256k1 sign \ + -k a1455c78a922c52f391c5784f8ca1457367fa57f9d7a74fdab7d2c90ca05c02e \ + -m hello + +3045022100a71d86190354d64e5b3eb2bd656313422cdf7def69bf3669cdbfd09a9162c96e0220713b81f3440bff0b639d2f29b2c48494b812fa89b754b7b6cdc9eaa8027cf369 +``` + +###### Check signature + +``` +$ python -m secp256k1 checksig \ + -p 02477ce3b986ab14d123d6c4167b085f4d08c1569963a0201b2ffc7d9d6086d2f3 \ + -m hello \ + -s 3045022100a71d86190354d64e5b3eb2bd656313422cdf7def69bf3669cdbfd09a9162c96e0220713b81f3440bff0b639d2f29b2c48494b812fa89b754b7b6cdc9eaa8027cf369 + +True +``` + +###### Generate a signature that allows recovering the public key + +``` +$ python -m secp256k1 signrec \ + -k a1455c78a922c52f391c5784f8ca1457367fa57f9d7a74fdab7d2c90ca05c02e \ + -m hello + +515fe95d0780b11633f3352deb064f1517d58f295a99131e9389da8bfacd64422513d0cd4e18a58d9f4873b592afe54cf63e8f294351d1e612c8a297b5255079 1 +``` + +###### Recover public key + +``` +$ python -m secp256k1 recpub \ + -s 515fe95d0780b11633f3352deb064f1517d58f295a99131e9389da8bfacd64422513d0cd4e18a58d9f4873b592afe54cf63e8f294351d1e612c8a297b5255079 \ + -i 1 \ + -m hello + +Public key: 02477ce3b986ab14d123d6c4167b085f4d08c1569963a0201b2ffc7d9d6086d2f3 +``` + + +It is easier to get started with command line, but it is more common to use this as a library. For that, check the next sections. + + +## API + +#### class `secp256k1.PrivateKey(privkey, raw)` + +The `PrivateKey` class loads or creates a private key by obtaining 32 bytes from urandom and operates over it. + +##### Instantiation parameters + +- `privkey=None` - generate a new private key if None, otherwise load a private key. +- `raw=True` - if `True`, it is assumed that `privkey` is just a sequence of bytes, otherwise it is assumed that it is in the DER format. This is not used when `privkey` is not specified. + +##### Methods and instance attributes + +- `pubkey`: an instance of `secp256k1.PublicKey`. +- `private_key`: raw bytes for the private key. + +- `set_raw_privkey(privkey)`<br/> +update the `private_key` for this instance with the bytes specified by `privkey`. If `privkey` is invalid, an Exception is raised. The `pubkey` is also updated based on the new private key. + +- `serialize()` -> bytes<br/> +convert the raw bytes present in `private key` to a hexadecimal string. + +- `deserialize(privkey_ser)` -> bytes<br/> +convert from a hexadecimal string to raw bytes and update the `pubkey` and `private_key` for this instance. + +- `tweak_add(scalar)` -> bytes<br/> +tweak the current private key by adding a 32 byte scalar to it and return a new raw private key composed of 32 bytes. + +- `tweak_mul(scalar)` -> bytes<br/> +tweak the current private key by multiplying it by a 32 byte scalar and return a new raw private key composed of 32 bytes. + +- `ecdsa_sign(msg, raw=False, digest=hashlib.sha256)` -> internal object<br/> +by default, create an ECDSA-SHA256 signature from the bytes in `msg`. If `raw` is True, then the `digest` function is not applied over `msg`, otherwise the `digest` must produce 256 bits or an `Exception` will be raised.<br/><br/> +The returned object is a structure from the C lib. If you want to store it (on a disk or similar), use `ecdsa_serialize` and later on use `ecdsa_deserialize` when loading. + +- `ecdsa_sign_recoverable(msg, raw=False, digest=hashlib.sha256)` -> internal object<br/> +create a recoverable ECDSA signature. See `ecdsa_sign` for parameters description. + +- `schnorr_sign(msg, bip340tag, raw=False)` -> bytes<br/> + +create a BIP-340 signature for `msg`; `bip340tag` should be a string +or byte value which distinguishes this usage from any other usage of +signatures (e.g. your program name, or full protocol name). If `raw` +is specified, then `bip340tag` is not used, and the `msg` (usually +a 32-byte hash) is signed directly. + +It produces non-malleable 64-byte signatures which support batch +validation. + + +#### class `secp256k1.PublicKey(pubkey, raw)` + +The `PublicKey` class loads an existing public key and operates over it. + +##### Instantiation parameters + +- `pubkey=None` - do not load a public key if None, otherwise do. +- `raw=False` - if `False`, it is assumed that `pubkey` has gone through `PublicKey.deserialize` already, otherwise it must be specified as bytes. + +##### Methods and instance attributes + +- `public_key`: an internal object representing the public key. + +- `serialize(compressed=True)` -> bytes<br/> +convert the `public_key` to bytes. If `compressed` is True, 33 bytes will be produced, otherwise 65 will be. + +- `deserialize(pubkey_ser)` -> internal object<br/> +convert the bytes resulting from a previous `serialize` call back to an internal object and update the `public_key` for this instance. The length of `pubkey_ser` determines if it was serialized with `compressed=True` or not. This will raise an Exception if the size is invalid or if the key is invalid. + +- `combine(pubkeys)` -> internal object<br/> +combine multiple public keys (those returned from `PublicKey.deserialize`) and return a public key (which can be serialized as any other regular public key). The `public_key` for this instance is updated to use the resulting combined key. If it is not possible the combine the keys, an Exception is raised. + +- `tweak_add(scalar)` -> internal object<br/> +tweak the current public key by adding a 32 byte scalar times the generator to it and return a new PublicKey instance. + +- `tweak_mul(scalar)` -> internal object<br/> +tweak the current public key by multiplying it by a 32 byte scalar and return a new PublicKey instance. + +- `ecdsa_verify(msg, raw_sig, raw=False, digest=hashlib.sha256)` -> bool<br/> +verify an ECDSA signature and return True if the signature is correct, False otherwise. `raw_sig` is expected to be an object returned from `ecdsa_sign` (or if it was serialized using `ecdsa_serialize`, then first run it through `ecdsa_deserialize`). `msg`, `raw`, and `digest` are used as described in `ecdsa_sign`. + +- `schnorr_verify(msg, schnorr_sig, bip340tag, raw=False)` -> bool<br/> +verify a Schnorr signature and return True if the signature is correct, False otherwise. `schnorr_sig` is expected to be the result from `schnorr_sign`, `msg`, `bip340tag` and `raw` must match those used in `schnorr_sign`. + +- `ecdh(scalar, hashfn=ffi.NULL, hasharg=ffi.NULL)` -> bytes<br/> +compute an EC Diffie-Hellman secret in constant time. The instance `public_key` is used as the public point, and the `scalar` specified must be composed of 32 bytes. It outputs 32 bytes representing the ECDH secret computed. The hashing function can be overridden, but (unlike libsecp256k1 itself) we insist that it produce 32-bytes of output. If the `scalar` is invalid, an Exception is raised. + + +#### class `secp256k1.ECDSA` + +The `ECDSA` class is intended to be used as a mix in. Its methods can be accessed from any `secp256k1.PrivateKey` or `secp256k1.PublicKey` instances. + +##### Methods + +- `ecdsa_serialize(raw_sig)` -> bytes<br/> +convert the result from `ecdsa_sign` to DER. + +- `ecdsa_deserialie(ser_sig)` -> internal object<br/> +convert DER bytes to an internal object. + +- `ecdsa_serialize_compact(raw_sig)` -> bytes<br/> +convert the result from `ecdsa_sign` to a compact serialization of 64 bytes. + +- `ecdsa_deserialize_compact(ser_sig)` -> internal object<br/> +convert a compact serialization of 64 bytes to an internal object. + +- `ecdsa_signature_normalize(raw_sig, check_only=False)` -> (bool, internal object | None)<br/> +check and optionally convert a signature to a normalized lower-S form. If `check_only` is True then the normalized signature is not returned.<br/><br/> +This function always return a tuple containing a boolean (True if not previously normalized or False if signature was already normalized), and the normalized signature. When `check_only` is True, the normalized signature returned is always None. + +- `ecdsa_recover(msg, recover_sig, raw=False, digest=hashlib.sha256)` -> internal object<br/> +recover an ECDSA public key from a signature generated by `ecdsa_sign_recoverable`. `recover_sig` is expected to be an object returned from `ecdsa_sign_recoverable` (or if it was serialized using `ecdsa_recoverable_serialize`, then first run it through `ecdsa_recoverable_deserialize`). `msg`, `raw`, and `digest` are used as described in `ecdsa_sign`.<br/><br/> + +- `ecdsa_recoverable_serialize(recover_sig)` -> (bytes, int)<br/> +convert the result from `ecdsa_sign_recoverable` to a tuple composed of 65 bytesand an integer denominated as recovery id. + +- `ecdsa_recoverable_deserialize(ser_sig, rec_id)`-> internal object<br/> +convert the result from `ecdsa_recoverable_serialize` back to an internal object that can be used by `ecdsa_recover`. + +- `ecdsa_recoverable_convert(recover_sig)` -> internal object<br/> +convert a recoverable signature to a normal signature, i.e. one that can be used by `ecdsa_serialize` and related methods. + + +## Example + +```python +from secp256k1 import PrivateKey, PublicKey + +privkey = PrivateKey() +privkey_der = privkey.serialize() +assert privkey.deserialize(privkey_der) == privkey.private_key + +sig = privkey.ecdsa_sign(b'hello') +verified = privkey.pubkey.ecdsa_verify(b'hello', sig) +assert verified + +sig_der = privkey.ecdsa_serialize(sig) +sig2 = privkey.ecdsa_deserialize(sig_der) +vrf2 = privkey.pubkey.ecdsa_verify(b'hello', sig2) +assert vrf2 + +pubkey = privkey.pubkey +pub = pubkey.serialize() + +pubkey2 = PublicKey(pub, raw=True) +assert pubkey2.serialize() == pub +assert pubkey2.ecdsa_verify(b'hello', sig) +``` + +```python +from secp256k1 import PrivateKey + +key = '31a84594060e103f5a63eb742bd46cf5f5900d8406e2726dedfc61c7cf43ebad' +msg = '9e5755ec2f328cc8635a55415d0e9a09c2b6f2c9b0343c945fbbfe08247a4cbe' +sig = '30440220132382ca59240c2e14ee7ff61d90fc63276325f4cbe8169fc53ade4a407c2fc802204d86fbe3bde6975dd5a91fdc95ad6544dcdf0dab206f02224ce7e2b151bd82ab' + +privkey = PrivateKey(bytes(bytearray.fromhex(key)), raw=True) +sig_check = privkey.ecdsa_sign(bytes(bytearray.fromhex(msg)), raw=True) +sig_ser = privkey.ecdsa_serialize(sig_check) + +assert sig_ser == bytes(bytearray.fromhex(sig)) +``` + +```python +from secp256k1 import PrivateKey + +key = '7ccca75d019dbae79ac4266501578684ee64eeb3c9212105f7a3bdc0ddb0f27e' +pub_compressed = '03e9a06e539d6bf5cf1ca5c41b59121fa3df07a338322405a312c67b6349a707e9' +pub_uncompressed = '04e9a06e539d6bf5cf1ca5c41b59121fa3df07a338322405a312c67b6349a707e94c181c5fe89306493dd5677143a329065606740ee58b873e01642228a09ecf9d' + +privkey = PrivateKey(bytes(bytearray.fromhex(key))) +pubkey_ser = privkey.pubkey.serialize() +pubkey_ser_uncompressed = privkey.pubkey.serialize(compressed=False) + +assert pubkey_ser == bytes(bytearray.fromhex(pub_compressed)) +assert pubkey_ser_uncompressed == bytes(bytearray.fromhex(pub_uncompressed)) +``` + + +## Technical details about the bundled libsecp256k1 + +The bundling of libsecp256k1 is handled by the various setup.py build phases: + +- During 'sdist': + If the directory `libsecp256k1` doesn't exist in the + source directory it is downloaded from the location specified + by the `LIB_TARBALL_URL` constant in `setup.py` and extracted into + a directory called `libsecp256k1` + + To upgrade to a newer version of the bundled libsecp256k1 source + simply delete the `libsecp256k1` directory and update the + `LIB_TARBALL_URL` to point to a newer commit. + +- During 'install': + To support (future) use of system libsecp256k1, and because of the + way the way cffi modules are implemented it is necessary + to perform system library detection in the cffi build module + `_cffi_build/build.py` as well as in `setup.py`. For that reason + some utility functions have been moved into a `setup_support.py` + module which is imported from both. + + By default, the bundled source code is used to build a library + locally that will be statically linked into the CFFI extension. + + You can set the environment variable `SECP_BUNDLED_NO_EXPERIMENTAL` + to disable all experimental modules except the `recovery` module. + +%package -n python3-secp256k1 +Summary: FFI bindings to libsecp256k1 +Provides: python-secp256k1 +BuildRequires: python3-devel +BuildRequires: python3-setuptools +BuildRequires: python3-pip +%description -n python3-secp256k1 +# secp256k1-py  + +Python FFI bindings for [libsecp256k1](https://github.com/bitcoin/secp256k1) +(an experimental and optimized C library for EC operations on curve secp256k1). + +Previously maintained by Ludvig Broberg, now at https://github.com/rustyrussell/secp256k1-py . + +## Installation + +``` +pip install secp256k1 +``` + +### Precompiled binary packages (wheels) + +Precompiled binary wheels is available for Python 2.7, 3.3, 3.4, and 3.5 on Linux. To take advantage of those you need to use pip >= 8.1.0. + +In case you don't want to use the binary packages you can prevent pip from +using them with the following command: + +``` +pip install --no-binary :all: secp256k1 +``` + + +### Installation with compilation + +If you either can't or don't want to use the binary package options described +above read on to learn what is needed to install the source pacakge. + +The library bundles its own libsecp256k1 currently, as there is no +versioning to allow us to safely determine compatibility with an +installed library, especially as we also build all the experimental +modules. + +For the bundled version to compile successfully you need to have a C compiler +as well as the development headers for `libffi` and `libgmp` installed. + +On Debian / Ubuntu for example the necessary packages are: + +* `build-essential` +* `automake` +* `pkg-config` +* `libtool` +* `libffi-dev` + +On OS X the necessary homebrew packages are: + +* `automake` +* `pkg-config` +* `libtool` +* `libffi` + + +## Command line usage + +###### Generate a private key and show the corresponding public key + +``` +$ python -m secp256k1 privkey -p + +a1455c78a922c52f391c5784f8ca1457367fa57f9d7a74fdab7d2c90ca05c02e +Public key: 02477ce3b986ab14d123d6c4167b085f4d08c1569963a0201b2ffc7d9d6086d2f3 +``` + +###### Sign a message + +``` +$ python -m secp256k1 sign \ + -k a1455c78a922c52f391c5784f8ca1457367fa57f9d7a74fdab7d2c90ca05c02e \ + -m hello + +3045022100a71d86190354d64e5b3eb2bd656313422cdf7def69bf3669cdbfd09a9162c96e0220713b81f3440bff0b639d2f29b2c48494b812fa89b754b7b6cdc9eaa8027cf369 +``` + +###### Check signature + +``` +$ python -m secp256k1 checksig \ + -p 02477ce3b986ab14d123d6c4167b085f4d08c1569963a0201b2ffc7d9d6086d2f3 \ + -m hello \ + -s 3045022100a71d86190354d64e5b3eb2bd656313422cdf7def69bf3669cdbfd09a9162c96e0220713b81f3440bff0b639d2f29b2c48494b812fa89b754b7b6cdc9eaa8027cf369 + +True +``` + +###### Generate a signature that allows recovering the public key + +``` +$ python -m secp256k1 signrec \ + -k a1455c78a922c52f391c5784f8ca1457367fa57f9d7a74fdab7d2c90ca05c02e \ + -m hello + +515fe95d0780b11633f3352deb064f1517d58f295a99131e9389da8bfacd64422513d0cd4e18a58d9f4873b592afe54cf63e8f294351d1e612c8a297b5255079 1 +``` + +###### Recover public key + +``` +$ python -m secp256k1 recpub \ + -s 515fe95d0780b11633f3352deb064f1517d58f295a99131e9389da8bfacd64422513d0cd4e18a58d9f4873b592afe54cf63e8f294351d1e612c8a297b5255079 \ + -i 1 \ + -m hello + +Public key: 02477ce3b986ab14d123d6c4167b085f4d08c1569963a0201b2ffc7d9d6086d2f3 +``` + + +It is easier to get started with command line, but it is more common to use this as a library. For that, check the next sections. + + +## API + +#### class `secp256k1.PrivateKey(privkey, raw)` + +The `PrivateKey` class loads or creates a private key by obtaining 32 bytes from urandom and operates over it. + +##### Instantiation parameters + +- `privkey=None` - generate a new private key if None, otherwise load a private key. +- `raw=True` - if `True`, it is assumed that `privkey` is just a sequence of bytes, otherwise it is assumed that it is in the DER format. This is not used when `privkey` is not specified. + +##### Methods and instance attributes + +- `pubkey`: an instance of `secp256k1.PublicKey`. +- `private_key`: raw bytes for the private key. + +- `set_raw_privkey(privkey)`<br/> +update the `private_key` for this instance with the bytes specified by `privkey`. If `privkey` is invalid, an Exception is raised. The `pubkey` is also updated based on the new private key. + +- `serialize()` -> bytes<br/> +convert the raw bytes present in `private key` to a hexadecimal string. + +- `deserialize(privkey_ser)` -> bytes<br/> +convert from a hexadecimal string to raw bytes and update the `pubkey` and `private_key` for this instance. + +- `tweak_add(scalar)` -> bytes<br/> +tweak the current private key by adding a 32 byte scalar to it and return a new raw private key composed of 32 bytes. + +- `tweak_mul(scalar)` -> bytes<br/> +tweak the current private key by multiplying it by a 32 byte scalar and return a new raw private key composed of 32 bytes. + +- `ecdsa_sign(msg, raw=False, digest=hashlib.sha256)` -> internal object<br/> +by default, create an ECDSA-SHA256 signature from the bytes in `msg`. If `raw` is True, then the `digest` function is not applied over `msg`, otherwise the `digest` must produce 256 bits or an `Exception` will be raised.<br/><br/> +The returned object is a structure from the C lib. If you want to store it (on a disk or similar), use `ecdsa_serialize` and later on use `ecdsa_deserialize` when loading. + +- `ecdsa_sign_recoverable(msg, raw=False, digest=hashlib.sha256)` -> internal object<br/> +create a recoverable ECDSA signature. See `ecdsa_sign` for parameters description. + +- `schnorr_sign(msg, bip340tag, raw=False)` -> bytes<br/> + +create a BIP-340 signature for `msg`; `bip340tag` should be a string +or byte value which distinguishes this usage from any other usage of +signatures (e.g. your program name, or full protocol name). If `raw` +is specified, then `bip340tag` is not used, and the `msg` (usually +a 32-byte hash) is signed directly. + +It produces non-malleable 64-byte signatures which support batch +validation. + + +#### class `secp256k1.PublicKey(pubkey, raw)` + +The `PublicKey` class loads an existing public key and operates over it. + +##### Instantiation parameters + +- `pubkey=None` - do not load a public key if None, otherwise do. +- `raw=False` - if `False`, it is assumed that `pubkey` has gone through `PublicKey.deserialize` already, otherwise it must be specified as bytes. + +##### Methods and instance attributes + +- `public_key`: an internal object representing the public key. + +- `serialize(compressed=True)` -> bytes<br/> +convert the `public_key` to bytes. If `compressed` is True, 33 bytes will be produced, otherwise 65 will be. + +- `deserialize(pubkey_ser)` -> internal object<br/> +convert the bytes resulting from a previous `serialize` call back to an internal object and update the `public_key` for this instance. The length of `pubkey_ser` determines if it was serialized with `compressed=True` or not. This will raise an Exception if the size is invalid or if the key is invalid. + +- `combine(pubkeys)` -> internal object<br/> +combine multiple public keys (those returned from `PublicKey.deserialize`) and return a public key (which can be serialized as any other regular public key). The `public_key` for this instance is updated to use the resulting combined key. If it is not possible the combine the keys, an Exception is raised. + +- `tweak_add(scalar)` -> internal object<br/> +tweak the current public key by adding a 32 byte scalar times the generator to it and return a new PublicKey instance. + +- `tweak_mul(scalar)` -> internal object<br/> +tweak the current public key by multiplying it by a 32 byte scalar and return a new PublicKey instance. + +- `ecdsa_verify(msg, raw_sig, raw=False, digest=hashlib.sha256)` -> bool<br/> +verify an ECDSA signature and return True if the signature is correct, False otherwise. `raw_sig` is expected to be an object returned from `ecdsa_sign` (or if it was serialized using `ecdsa_serialize`, then first run it through `ecdsa_deserialize`). `msg`, `raw`, and `digest` are used as described in `ecdsa_sign`. + +- `schnorr_verify(msg, schnorr_sig, bip340tag, raw=False)` -> bool<br/> +verify a Schnorr signature and return True if the signature is correct, False otherwise. `schnorr_sig` is expected to be the result from `schnorr_sign`, `msg`, `bip340tag` and `raw` must match those used in `schnorr_sign`. + +- `ecdh(scalar, hashfn=ffi.NULL, hasharg=ffi.NULL)` -> bytes<br/> +compute an EC Diffie-Hellman secret in constant time. The instance `public_key` is used as the public point, and the `scalar` specified must be composed of 32 bytes. It outputs 32 bytes representing the ECDH secret computed. The hashing function can be overridden, but (unlike libsecp256k1 itself) we insist that it produce 32-bytes of output. If the `scalar` is invalid, an Exception is raised. + + +#### class `secp256k1.ECDSA` + +The `ECDSA` class is intended to be used as a mix in. Its methods can be accessed from any `secp256k1.PrivateKey` or `secp256k1.PublicKey` instances. + +##### Methods + +- `ecdsa_serialize(raw_sig)` -> bytes<br/> +convert the result from `ecdsa_sign` to DER. + +- `ecdsa_deserialie(ser_sig)` -> internal object<br/> +convert DER bytes to an internal object. + +- `ecdsa_serialize_compact(raw_sig)` -> bytes<br/> +convert the result from `ecdsa_sign` to a compact serialization of 64 bytes. + +- `ecdsa_deserialize_compact(ser_sig)` -> internal object<br/> +convert a compact serialization of 64 bytes to an internal object. + +- `ecdsa_signature_normalize(raw_sig, check_only=False)` -> (bool, internal object | None)<br/> +check and optionally convert a signature to a normalized lower-S form. If `check_only` is True then the normalized signature is not returned.<br/><br/> +This function always return a tuple containing a boolean (True if not previously normalized or False if signature was already normalized), and the normalized signature. When `check_only` is True, the normalized signature returned is always None. + +- `ecdsa_recover(msg, recover_sig, raw=False, digest=hashlib.sha256)` -> internal object<br/> +recover an ECDSA public key from a signature generated by `ecdsa_sign_recoverable`. `recover_sig` is expected to be an object returned from `ecdsa_sign_recoverable` (or if it was serialized using `ecdsa_recoverable_serialize`, then first run it through `ecdsa_recoverable_deserialize`). `msg`, `raw`, and `digest` are used as described in `ecdsa_sign`.<br/><br/> + +- `ecdsa_recoverable_serialize(recover_sig)` -> (bytes, int)<br/> +convert the result from `ecdsa_sign_recoverable` to a tuple composed of 65 bytesand an integer denominated as recovery id. + +- `ecdsa_recoverable_deserialize(ser_sig, rec_id)`-> internal object<br/> +convert the result from `ecdsa_recoverable_serialize` back to an internal object that can be used by `ecdsa_recover`. + +- `ecdsa_recoverable_convert(recover_sig)` -> internal object<br/> +convert a recoverable signature to a normal signature, i.e. one that can be used by `ecdsa_serialize` and related methods. + + +## Example + +```python +from secp256k1 import PrivateKey, PublicKey + +privkey = PrivateKey() +privkey_der = privkey.serialize() +assert privkey.deserialize(privkey_der) == privkey.private_key + +sig = privkey.ecdsa_sign(b'hello') +verified = privkey.pubkey.ecdsa_verify(b'hello', sig) +assert verified + +sig_der = privkey.ecdsa_serialize(sig) +sig2 = privkey.ecdsa_deserialize(sig_der) +vrf2 = privkey.pubkey.ecdsa_verify(b'hello', sig2) +assert vrf2 + +pubkey = privkey.pubkey +pub = pubkey.serialize() + +pubkey2 = PublicKey(pub, raw=True) +assert pubkey2.serialize() == pub +assert pubkey2.ecdsa_verify(b'hello', sig) +``` + +```python +from secp256k1 import PrivateKey + +key = '31a84594060e103f5a63eb742bd46cf5f5900d8406e2726dedfc61c7cf43ebad' +msg = '9e5755ec2f328cc8635a55415d0e9a09c2b6f2c9b0343c945fbbfe08247a4cbe' +sig = '30440220132382ca59240c2e14ee7ff61d90fc63276325f4cbe8169fc53ade4a407c2fc802204d86fbe3bde6975dd5a91fdc95ad6544dcdf0dab206f02224ce7e2b151bd82ab' + +privkey = PrivateKey(bytes(bytearray.fromhex(key)), raw=True) +sig_check = privkey.ecdsa_sign(bytes(bytearray.fromhex(msg)), raw=True) +sig_ser = privkey.ecdsa_serialize(sig_check) + +assert sig_ser == bytes(bytearray.fromhex(sig)) +``` + +```python +from secp256k1 import PrivateKey + +key = '7ccca75d019dbae79ac4266501578684ee64eeb3c9212105f7a3bdc0ddb0f27e' +pub_compressed = '03e9a06e539d6bf5cf1ca5c41b59121fa3df07a338322405a312c67b6349a707e9' +pub_uncompressed = '04e9a06e539d6bf5cf1ca5c41b59121fa3df07a338322405a312c67b6349a707e94c181c5fe89306493dd5677143a329065606740ee58b873e01642228a09ecf9d' + +privkey = PrivateKey(bytes(bytearray.fromhex(key))) +pubkey_ser = privkey.pubkey.serialize() +pubkey_ser_uncompressed = privkey.pubkey.serialize(compressed=False) + +assert pubkey_ser == bytes(bytearray.fromhex(pub_compressed)) +assert pubkey_ser_uncompressed == bytes(bytearray.fromhex(pub_uncompressed)) +``` + + +## Technical details about the bundled libsecp256k1 + +The bundling of libsecp256k1 is handled by the various setup.py build phases: + +- During 'sdist': + If the directory `libsecp256k1` doesn't exist in the + source directory it is downloaded from the location specified + by the `LIB_TARBALL_URL` constant in `setup.py` and extracted into + a directory called `libsecp256k1` + + To upgrade to a newer version of the bundled libsecp256k1 source + simply delete the `libsecp256k1` directory and update the + `LIB_TARBALL_URL` to point to a newer commit. + +- During 'install': + To support (future) use of system libsecp256k1, and because of the + way the way cffi modules are implemented it is necessary + to perform system library detection in the cffi build module + `_cffi_build/build.py` as well as in `setup.py`. For that reason + some utility functions have been moved into a `setup_support.py` + module which is imported from both. + + By default, the bundled source code is used to build a library + locally that will be statically linked into the CFFI extension. + + You can set the environment variable `SECP_BUNDLED_NO_EXPERIMENTAL` + to disable all experimental modules except the `recovery` module. + +%package help +Summary: Development documents and examples for secp256k1 +Provides: python3-secp256k1-doc +%description help +# secp256k1-py  + +Python FFI bindings for [libsecp256k1](https://github.com/bitcoin/secp256k1) +(an experimental and optimized C library for EC operations on curve secp256k1). + +Previously maintained by Ludvig Broberg, now at https://github.com/rustyrussell/secp256k1-py . + +## Installation + +``` +pip install secp256k1 +``` + +### Precompiled binary packages (wheels) + +Precompiled binary wheels is available for Python 2.7, 3.3, 3.4, and 3.5 on Linux. To take advantage of those you need to use pip >= 8.1.0. + +In case you don't want to use the binary packages you can prevent pip from +using them with the following command: + +``` +pip install --no-binary :all: secp256k1 +``` + + +### Installation with compilation + +If you either can't or don't want to use the binary package options described +above read on to learn what is needed to install the source pacakge. + +The library bundles its own libsecp256k1 currently, as there is no +versioning to allow us to safely determine compatibility with an +installed library, especially as we also build all the experimental +modules. + +For the bundled version to compile successfully you need to have a C compiler +as well as the development headers for `libffi` and `libgmp` installed. + +On Debian / Ubuntu for example the necessary packages are: + +* `build-essential` +* `automake` +* `pkg-config` +* `libtool` +* `libffi-dev` + +On OS X the necessary homebrew packages are: + +* `automake` +* `pkg-config` +* `libtool` +* `libffi` + + +## Command line usage + +###### Generate a private key and show the corresponding public key + +``` +$ python -m secp256k1 privkey -p + +a1455c78a922c52f391c5784f8ca1457367fa57f9d7a74fdab7d2c90ca05c02e +Public key: 02477ce3b986ab14d123d6c4167b085f4d08c1569963a0201b2ffc7d9d6086d2f3 +``` + +###### Sign a message + +``` +$ python -m secp256k1 sign \ + -k a1455c78a922c52f391c5784f8ca1457367fa57f9d7a74fdab7d2c90ca05c02e \ + -m hello + +3045022100a71d86190354d64e5b3eb2bd656313422cdf7def69bf3669cdbfd09a9162c96e0220713b81f3440bff0b639d2f29b2c48494b812fa89b754b7b6cdc9eaa8027cf369 +``` + +###### Check signature + +``` +$ python -m secp256k1 checksig \ + -p 02477ce3b986ab14d123d6c4167b085f4d08c1569963a0201b2ffc7d9d6086d2f3 \ + -m hello \ + -s 3045022100a71d86190354d64e5b3eb2bd656313422cdf7def69bf3669cdbfd09a9162c96e0220713b81f3440bff0b639d2f29b2c48494b812fa89b754b7b6cdc9eaa8027cf369 + +True +``` + +###### Generate a signature that allows recovering the public key + +``` +$ python -m secp256k1 signrec \ + -k a1455c78a922c52f391c5784f8ca1457367fa57f9d7a74fdab7d2c90ca05c02e \ + -m hello + +515fe95d0780b11633f3352deb064f1517d58f295a99131e9389da8bfacd64422513d0cd4e18a58d9f4873b592afe54cf63e8f294351d1e612c8a297b5255079 1 +``` + +###### Recover public key + +``` +$ python -m secp256k1 recpub \ + -s 515fe95d0780b11633f3352deb064f1517d58f295a99131e9389da8bfacd64422513d0cd4e18a58d9f4873b592afe54cf63e8f294351d1e612c8a297b5255079 \ + -i 1 \ + -m hello + +Public key: 02477ce3b986ab14d123d6c4167b085f4d08c1569963a0201b2ffc7d9d6086d2f3 +``` + + +It is easier to get started with command line, but it is more common to use this as a library. For that, check the next sections. + + +## API + +#### class `secp256k1.PrivateKey(privkey, raw)` + +The `PrivateKey` class loads or creates a private key by obtaining 32 bytes from urandom and operates over it. + +##### Instantiation parameters + +- `privkey=None` - generate a new private key if None, otherwise load a private key. +- `raw=True` - if `True`, it is assumed that `privkey` is just a sequence of bytes, otherwise it is assumed that it is in the DER format. This is not used when `privkey` is not specified. + +##### Methods and instance attributes + +- `pubkey`: an instance of `secp256k1.PublicKey`. +- `private_key`: raw bytes for the private key. + +- `set_raw_privkey(privkey)`<br/> +update the `private_key` for this instance with the bytes specified by `privkey`. If `privkey` is invalid, an Exception is raised. The `pubkey` is also updated based on the new private key. + +- `serialize()` -> bytes<br/> +convert the raw bytes present in `private key` to a hexadecimal string. + +- `deserialize(privkey_ser)` -> bytes<br/> +convert from a hexadecimal string to raw bytes and update the `pubkey` and `private_key` for this instance. + +- `tweak_add(scalar)` -> bytes<br/> +tweak the current private key by adding a 32 byte scalar to it and return a new raw private key composed of 32 bytes. + +- `tweak_mul(scalar)` -> bytes<br/> +tweak the current private key by multiplying it by a 32 byte scalar and return a new raw private key composed of 32 bytes. + +- `ecdsa_sign(msg, raw=False, digest=hashlib.sha256)` -> internal object<br/> +by default, create an ECDSA-SHA256 signature from the bytes in `msg`. If `raw` is True, then the `digest` function is not applied over `msg`, otherwise the `digest` must produce 256 bits or an `Exception` will be raised.<br/><br/> +The returned object is a structure from the C lib. If you want to store it (on a disk or similar), use `ecdsa_serialize` and later on use `ecdsa_deserialize` when loading. + +- `ecdsa_sign_recoverable(msg, raw=False, digest=hashlib.sha256)` -> internal object<br/> +create a recoverable ECDSA signature. See `ecdsa_sign` for parameters description. + +- `schnorr_sign(msg, bip340tag, raw=False)` -> bytes<br/> + +create a BIP-340 signature for `msg`; `bip340tag` should be a string +or byte value which distinguishes this usage from any other usage of +signatures (e.g. your program name, or full protocol name). If `raw` +is specified, then `bip340tag` is not used, and the `msg` (usually +a 32-byte hash) is signed directly. + +It produces non-malleable 64-byte signatures which support batch +validation. + + +#### class `secp256k1.PublicKey(pubkey, raw)` + +The `PublicKey` class loads an existing public key and operates over it. + +##### Instantiation parameters + +- `pubkey=None` - do not load a public key if None, otherwise do. +- `raw=False` - if `False`, it is assumed that `pubkey` has gone through `PublicKey.deserialize` already, otherwise it must be specified as bytes. + +##### Methods and instance attributes + +- `public_key`: an internal object representing the public key. + +- `serialize(compressed=True)` -> bytes<br/> +convert the `public_key` to bytes. If `compressed` is True, 33 bytes will be produced, otherwise 65 will be. + +- `deserialize(pubkey_ser)` -> internal object<br/> +convert the bytes resulting from a previous `serialize` call back to an internal object and update the `public_key` for this instance. The length of `pubkey_ser` determines if it was serialized with `compressed=True` or not. This will raise an Exception if the size is invalid or if the key is invalid. + +- `combine(pubkeys)` -> internal object<br/> +combine multiple public keys (those returned from `PublicKey.deserialize`) and return a public key (which can be serialized as any other regular public key). The `public_key` for this instance is updated to use the resulting combined key. If it is not possible the combine the keys, an Exception is raised. + +- `tweak_add(scalar)` -> internal object<br/> +tweak the current public key by adding a 32 byte scalar times the generator to it and return a new PublicKey instance. + +- `tweak_mul(scalar)` -> internal object<br/> +tweak the current public key by multiplying it by a 32 byte scalar and return a new PublicKey instance. + +- `ecdsa_verify(msg, raw_sig, raw=False, digest=hashlib.sha256)` -> bool<br/> +verify an ECDSA signature and return True if the signature is correct, False otherwise. `raw_sig` is expected to be an object returned from `ecdsa_sign` (or if it was serialized using `ecdsa_serialize`, then first run it through `ecdsa_deserialize`). `msg`, `raw`, and `digest` are used as described in `ecdsa_sign`. + +- `schnorr_verify(msg, schnorr_sig, bip340tag, raw=False)` -> bool<br/> +verify a Schnorr signature and return True if the signature is correct, False otherwise. `schnorr_sig` is expected to be the result from `schnorr_sign`, `msg`, `bip340tag` and `raw` must match those used in `schnorr_sign`. + +- `ecdh(scalar, hashfn=ffi.NULL, hasharg=ffi.NULL)` -> bytes<br/> +compute an EC Diffie-Hellman secret in constant time. The instance `public_key` is used as the public point, and the `scalar` specified must be composed of 32 bytes. It outputs 32 bytes representing the ECDH secret computed. The hashing function can be overridden, but (unlike libsecp256k1 itself) we insist that it produce 32-bytes of output. If the `scalar` is invalid, an Exception is raised. + + +#### class `secp256k1.ECDSA` + +The `ECDSA` class is intended to be used as a mix in. Its methods can be accessed from any `secp256k1.PrivateKey` or `secp256k1.PublicKey` instances. + +##### Methods + +- `ecdsa_serialize(raw_sig)` -> bytes<br/> +convert the result from `ecdsa_sign` to DER. + +- `ecdsa_deserialie(ser_sig)` -> internal object<br/> +convert DER bytes to an internal object. + +- `ecdsa_serialize_compact(raw_sig)` -> bytes<br/> +convert the result from `ecdsa_sign` to a compact serialization of 64 bytes. + +- `ecdsa_deserialize_compact(ser_sig)` -> internal object<br/> +convert a compact serialization of 64 bytes to an internal object. + +- `ecdsa_signature_normalize(raw_sig, check_only=False)` -> (bool, internal object | None)<br/> +check and optionally convert a signature to a normalized lower-S form. If `check_only` is True then the normalized signature is not returned.<br/><br/> +This function always return a tuple containing a boolean (True if not previously normalized or False if signature was already normalized), and the normalized signature. When `check_only` is True, the normalized signature returned is always None. + +- `ecdsa_recover(msg, recover_sig, raw=False, digest=hashlib.sha256)` -> internal object<br/> +recover an ECDSA public key from a signature generated by `ecdsa_sign_recoverable`. `recover_sig` is expected to be an object returned from `ecdsa_sign_recoverable` (or if it was serialized using `ecdsa_recoverable_serialize`, then first run it through `ecdsa_recoverable_deserialize`). `msg`, `raw`, and `digest` are used as described in `ecdsa_sign`.<br/><br/> + +- `ecdsa_recoverable_serialize(recover_sig)` -> (bytes, int)<br/> +convert the result from `ecdsa_sign_recoverable` to a tuple composed of 65 bytesand an integer denominated as recovery id. + +- `ecdsa_recoverable_deserialize(ser_sig, rec_id)`-> internal object<br/> +convert the result from `ecdsa_recoverable_serialize` back to an internal object that can be used by `ecdsa_recover`. + +- `ecdsa_recoverable_convert(recover_sig)` -> internal object<br/> +convert a recoverable signature to a normal signature, i.e. one that can be used by `ecdsa_serialize` and related methods. + + +## Example + +```python +from secp256k1 import PrivateKey, PublicKey + +privkey = PrivateKey() +privkey_der = privkey.serialize() +assert privkey.deserialize(privkey_der) == privkey.private_key + +sig = privkey.ecdsa_sign(b'hello') +verified = privkey.pubkey.ecdsa_verify(b'hello', sig) +assert verified + +sig_der = privkey.ecdsa_serialize(sig) +sig2 = privkey.ecdsa_deserialize(sig_der) +vrf2 = privkey.pubkey.ecdsa_verify(b'hello', sig2) +assert vrf2 + +pubkey = privkey.pubkey +pub = pubkey.serialize() + +pubkey2 = PublicKey(pub, raw=True) +assert pubkey2.serialize() == pub +assert pubkey2.ecdsa_verify(b'hello', sig) +``` + +```python +from secp256k1 import PrivateKey + +key = '31a84594060e103f5a63eb742bd46cf5f5900d8406e2726dedfc61c7cf43ebad' +msg = '9e5755ec2f328cc8635a55415d0e9a09c2b6f2c9b0343c945fbbfe08247a4cbe' +sig = '30440220132382ca59240c2e14ee7ff61d90fc63276325f4cbe8169fc53ade4a407c2fc802204d86fbe3bde6975dd5a91fdc95ad6544dcdf0dab206f02224ce7e2b151bd82ab' + +privkey = PrivateKey(bytes(bytearray.fromhex(key)), raw=True) +sig_check = privkey.ecdsa_sign(bytes(bytearray.fromhex(msg)), raw=True) +sig_ser = privkey.ecdsa_serialize(sig_check) + +assert sig_ser == bytes(bytearray.fromhex(sig)) +``` + +```python +from secp256k1 import PrivateKey + +key = '7ccca75d019dbae79ac4266501578684ee64eeb3c9212105f7a3bdc0ddb0f27e' +pub_compressed = '03e9a06e539d6bf5cf1ca5c41b59121fa3df07a338322405a312c67b6349a707e9' +pub_uncompressed = '04e9a06e539d6bf5cf1ca5c41b59121fa3df07a338322405a312c67b6349a707e94c181c5fe89306493dd5677143a329065606740ee58b873e01642228a09ecf9d' + +privkey = PrivateKey(bytes(bytearray.fromhex(key))) +pubkey_ser = privkey.pubkey.serialize() +pubkey_ser_uncompressed = privkey.pubkey.serialize(compressed=False) + +assert pubkey_ser == bytes(bytearray.fromhex(pub_compressed)) +assert pubkey_ser_uncompressed == bytes(bytearray.fromhex(pub_uncompressed)) +``` + + +## Technical details about the bundled libsecp256k1 + +The bundling of libsecp256k1 is handled by the various setup.py build phases: + +- During 'sdist': + If the directory `libsecp256k1` doesn't exist in the + source directory it is downloaded from the location specified + by the `LIB_TARBALL_URL` constant in `setup.py` and extracted into + a directory called `libsecp256k1` + + To upgrade to a newer version of the bundled libsecp256k1 source + simply delete the `libsecp256k1` directory and update the + `LIB_TARBALL_URL` to point to a newer commit. + +- During 'install': + To support (future) use of system libsecp256k1, and because of the + way the way cffi modules are implemented it is necessary + to perform system library detection in the cffi build module + `_cffi_build/build.py` as well as in `setup.py`. For that reason + some utility functions have been moved into a `setup_support.py` + module which is imported from both. + + By default, the bundled source code is used to build a library + locally that will be statically linked into the CFFI extension. + + You can set the environment variable `SECP_BUNDLED_NO_EXPERIMENTAL` + to disable all experimental modules except the `recovery` module. + +%prep +%autosetup -n secp256k1-0.14.0 + +%build +%py3_build + +%install +%py3_install +install -d -m755 %{buildroot}/%{_pkgdocdir} +if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi +if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi +if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi +if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi +pushd %{buildroot} +if [ -d usr/lib ]; then + find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/lib64 ]; then + find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/bin ]; then + find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/sbin ]; then + find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst +fi +touch doclist.lst +if [ -d usr/share/man ]; then + find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst +fi +popd +mv %{buildroot}/filelist.lst . +mv %{buildroot}/doclist.lst . + +%files -n python3-secp256k1 -f filelist.lst +%dir %{python3_sitelib}/* + +%files help -f doclist.lst +%{_docdir}/* + +%changelog +* Wed Apr 12 2023 Python_Bot <Python_Bot@openeuler.org> - 0.14.0-1 +- Package Spec generated @@ -0,0 +1 @@ +5f45f9d4a6b35e2324fdc08190400798 secp256k1-0.14.0.tar.gz |
