summaryrefslogtreecommitdiff
path: root/python-seglearn.spec
blob: dfdd7f1b4a0dd33313bd4667757a05168feef83d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
%global _empty_manifest_terminate_build 0
Name:		python-seglearn
Version:	1.2.5
Release:	1
Summary:	A template for scikit-learn compatible packages.
License:	BSD
URL:		https://github.com/dmbee/seglearn
Source0:	https://mirrors.aliyun.com/pypi/web/packages/08/4b/f287b7bcbdca0e8b1bce37fed9277896207c69fed97c7495c6a557a1ddb9/seglearn-1.2.5.tar.gz
BuildArch:	noarch

Requires:	python3-numpy
Requires:	python3-scipy
Requires:	python3-scikit-learn
Requires:	python3-sphinx
Requires:	python3-sphinx-gallery
Requires:	python3-sphinx-rtd-theme
Requires:	python3-numpydoc
Requires:	python3-matplotlib
Requires:	python3-keras
Requires:	python3-pandas
Requires:	python3-imbalanced-learn
Requires:	python3-pytest
Requires:	python3-pytest-cov

%description
Seglearn is a python package for machine learning time series or sequences. It provides an integrated pipeline for segmentation, feature extraction, feature processing, and final estimator. Seglearn provides a flexible approach to multivariate time series and related contextual (meta) data for classification, regression, and forecasting problems. Support and examples are provided for learning time series with classical machine learning and deep learning models. It is compatible with scikit-learn_.

%package -n python3-seglearn
Summary:	A template for scikit-learn compatible packages.
Provides:	python-seglearn
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-seglearn
Seglearn is a python package for machine learning time series or sequences. It provides an integrated pipeline for segmentation, feature extraction, feature processing, and final estimator. Seglearn provides a flexible approach to multivariate time series and related contextual (meta) data for classification, regression, and forecasting problems. Support and examples are provided for learning time series with classical machine learning and deep learning models. It is compatible with scikit-learn_.

%package help
Summary:	Development documents and examples for seglearn
Provides:	python3-seglearn-doc
%description help
Seglearn is a python package for machine learning time series or sequences. It provides an integrated pipeline for segmentation, feature extraction, feature processing, and final estimator. Seglearn provides a flexible approach to multivariate time series and related contextual (meta) data for classification, regression, and forecasting problems. Support and examples are provided for learning time series with classical machine learning and deep learning models. It is compatible with scikit-learn_.

%prep
%autosetup -n seglearn-1.2.5

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "\"/%h/%f.gz\"\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-seglearn -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Fri Jun 09 2023 Python_Bot <Python_Bot@openeuler.org> - 1.2.5-1
- Package Spec generated