summaryrefslogtreecommitdiff
path: root/python-sentence-spliter.spec
blob: 445883af234322409bc45a34f25c73ac34059353 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
%global _empty_manifest_terminate_build 0
Name:		python-sentence-spliter
Version:	2.1.8
Release:	1
Summary:	This is a sentence cutting tool, currently support English & Chinese
License:	MIT
URL:		https://pypi.org/project/sentence-spliter/
Source0:	https://mirrors.aliyun.com/pypi/web/packages/b8/1a/ad39b7a6ca2588352824775570348db8a0db8791ecdef69e6dc9c1c98762/sentence-spliter-2.1.8.tar.gz
BuildArch:	noarch

Requires:	python3-attrd
Requires:	python3-attrdict
Requires:	python3-attrs
Requires:	python3-importlib-metadata
Requires:	python3-loguru
Requires:	python3-more-itertools
Requires:	python3-packaging
Requires:	python3-pluggy
Requires:	python3-py
Requires:	python3-pyparsing
Requires:	python3-pytest
Requires:	python3-six
Requires:	python3-wcwidth
Requires:	python3-zipp

%description
# sentence-spliter

[toc]

## 简介

sentence-spliter 句子切分工具:将一个长句或者段落,切分为若干短句的 List 。支持自然切分,中间切分等。

目前支持语言:中文, 英文,韩语



## Architechture

- 项目结构

```
.
├── doc								# 补充文档
├── LICENSE							# 许可证
├── MANIFEST.in						# 用于setup时包含其他文件
├── pyproject.toml					# 用于构建项目
├── README.md
├── requirements.txt
├── sentence_spliter
│   ├── architect					# 存放切句的基本单元
│   ├── cutter4grammar				# 语法纠错定制的切句
│   ├── en_cutter					# 英文切句
│   ├── test						# 单元测试
│   ├── utility						# 其他工具函数
│   └── zh_cutter					# 中文切句
└── setup.py						# setup.py
```

更详细的目录结构见 [链接](doc/detail.md)


## Setup

git 安装

```
git clone git@git.duowan.com:ai/nlp/sentence-spliter.git
pip install -U pip
pip install -r requirements.txt
```



PYPI 安装

```
pip install sentence_spliter
```



## API

### 请求示例

```
curl --location --request POST 'https://rosetta-nlp-api.duowan.com/api/v1/sentence-spliter/en-sentence-spliter' \
--header 'Content-Type: application/json' \
--data-raw '{
  "paragraphs":["A long time ago..... there is a mountain, and there is a temple in the mountain!!! And here is an old monk in the temple!?...."] ,
  "options": {
      "max_len": 30,
      "min_len": 6
  }
} '
```



- Request

```
{
  "paragraphs":["A long time ago..... there is a mountain, and there is a temple in the mountain!!! And here is an old monk in the temple!?...."] ,
  "options": {
      "max_len": 30,
      "min_len": 6
  }
} 
```



- Response

```
{
    "code": 0,
    "data": {
        "paragraphs": [
            "A long time ago..... there is a mountain, and there is a temple in the mountain!!! And here is an old monk in the temple!?...."
        ],
        "sub_sentences": [
            [
                [
                    "A long time ago..... there is a mountain, and there is a temple in the mountain!!!"
                ],
                [
                    " And here is an old monk in the temple!?...."
                ]
            ]
        ],
        "version": "1.0.0"
    },
    "message": "success"
}
```



  ### 响应参数说明

| **字段名**    | **类型** | **说明**           |
| :------------ | :------- | :----------------- |
| paragraphs    | String   | 需要切分的段落列表 |
| sub_sentences | String   | 切分完成的子句     |

接口相关更多内容见[接口文档](./doc/interface.md)

**<font color="#dd0000">特别注意:version字段改动涉及广东部门是否需要重跑流水线  </font>**[链接](./doc/detail#version-number)  



## 状态机

### Data

需要用到的主要辅助数据为以下两个:

- 白名单表: <cutter>/white_list.txt
- 权重表:<cutter>/weights_list.txt



### Format

白名单表格式:

```
Dr.
U!S!A!
No.
abbr.
Brig.
Ltd.
b.
N.
hr.
```

每行一个字符串,算法扫描到白名单中被记录字符串中的结束符号将会不计为一种象征结束的标志。



权重表:

```
and 10
or 10
but 10
even 10
however 10
whenever 10
whatever 10
although 10
thought 10
```

每行为:`word`+`weight`的格式,表示各个有转折、承接上下文等作用含义的词在需要句内切割时的权重大小。



### 介绍

以下句子作为样本:

```python
sentence = 'I like chicken. I like chicken.'
```



#### ***Sequence***

Sequence模块首先将需要切割的句子转换为某种特殊的序列格式。

```mermaid
graph LR
A[I like chicken.] -->B[I]
subgraph sequence
    B -->C[<space>]
    C -->D[like]
    D --> E[<space>]
    E --> F[chicken]
    F --> G[.]
end

```
sequence将直接进入状态机



#### ***Condition*** and ***Operation***

Condition模块表示执行某个动作之前的某个条件或者判断,若满足该条件则执行,否则执行不满足该条件的动作。

Operation模块表示某个动作或者称为操作

```mermaid
    graph LR
A{Condition} -->|True| B[Operation1]
A -->|False| C[Operation2]
    
```



#### ***Condition&Operation***模块

由一系列上图Condition&Operation组成的模块

表示一连串的判断、动作序列组合叠加

进而

```mermaid
    graph LR
A{Condition1} -->|True| B[Condition&Operation1]
A -->|False| C[Condition&Operation2]
B -->D[Condition&Operation3]
C -->E[Condition&Operation4]
```



#### ***Logic***

上述Condition&Operation模块形成了整个Logic

所有的Condition&Operation模块进一步叠加得到整个大的逻辑图



### 运行

- 导入相关包

```python
from sentence_spliter.en_cutter.en_sequence import Sequence 				# 导入英文切句框架内的sequence类
from sentence_spliter.en_cutter.logic import SimpleLogic, LongShortLogic	# 导入英文切句框架内的logic类
```

- 加载句子为sequence类

```python
sentence = 'I like chicken. I like chicken.'								# 例句
seq = Sequence(sentence)                                                    # 转化为sequence
simple_logic = SimpleLogic()												# 自然切句逻辑
long_logic = LongShortLogic(max_len=max_len, min_len=min_len)				# 切割长短句
```

- 执行切句

```
simple_result = simple_logic.run(seq, debug=True)
long_results = long_logic.run(seq, debug=True)
```



## 打包上传

- 打开setup.py,修改相应的配置(version等)

```python
from setuptools import setup, find_packages

setup(
    name="sentence-spliter",
    version="X.X.X",
    author="<your name>",
    author_email="<your email>",
	...
)
```

- 在项目根目录运行以下命令

```
./bin/package.sh
```

- 键入账号和密码

```
Enter your username: <your username>
Enter your password: <your password>
```

- 等待上传即可

详细教程可见[链接](https://packaging.python.org/en/latest/tutorials/packaging-projects/)


%package -n python3-sentence-spliter
Summary:	This is a sentence cutting tool, currently support English & Chinese
Provides:	python-sentence-spliter
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-sentence-spliter
# sentence-spliter

[toc]

## 简介

sentence-spliter 句子切分工具:将一个长句或者段落,切分为若干短句的 List 。支持自然切分,中间切分等。

目前支持语言:中文, 英文,韩语



## Architechture

- 项目结构

```
.
├── doc								# 补充文档
├── LICENSE							# 许可证
├── MANIFEST.in						# 用于setup时包含其他文件
├── pyproject.toml					# 用于构建项目
├── README.md
├── requirements.txt
├── sentence_spliter
│   ├── architect					# 存放切句的基本单元
│   ├── cutter4grammar				# 语法纠错定制的切句
│   ├── en_cutter					# 英文切句
│   ├── test						# 单元测试
│   ├── utility						# 其他工具函数
│   └── zh_cutter					# 中文切句
└── setup.py						# setup.py
```

更详细的目录结构见 [链接](doc/detail.md)


## Setup

git 安装

```
git clone git@git.duowan.com:ai/nlp/sentence-spliter.git
pip install -U pip
pip install -r requirements.txt
```



PYPI 安装

```
pip install sentence_spliter
```



## API

### 请求示例

```
curl --location --request POST 'https://rosetta-nlp-api.duowan.com/api/v1/sentence-spliter/en-sentence-spliter' \
--header 'Content-Type: application/json' \
--data-raw '{
  "paragraphs":["A long time ago..... there is a mountain, and there is a temple in the mountain!!! And here is an old monk in the temple!?...."] ,
  "options": {
      "max_len": 30,
      "min_len": 6
  }
} '
```



- Request

```
{
  "paragraphs":["A long time ago..... there is a mountain, and there is a temple in the mountain!!! And here is an old monk in the temple!?...."] ,
  "options": {
      "max_len": 30,
      "min_len": 6
  }
} 
```



- Response

```
{
    "code": 0,
    "data": {
        "paragraphs": [
            "A long time ago..... there is a mountain, and there is a temple in the mountain!!! And here is an old monk in the temple!?...."
        ],
        "sub_sentences": [
            [
                [
                    "A long time ago..... there is a mountain, and there is a temple in the mountain!!!"
                ],
                [
                    " And here is an old monk in the temple!?...."
                ]
            ]
        ],
        "version": "1.0.0"
    },
    "message": "success"
}
```



  ### 响应参数说明

| **字段名**    | **类型** | **说明**           |
| :------------ | :------- | :----------------- |
| paragraphs    | String   | 需要切分的段落列表 |
| sub_sentences | String   | 切分完成的子句     |

接口相关更多内容见[接口文档](./doc/interface.md)

**<font color="#dd0000">特别注意:version字段改动涉及广东部门是否需要重跑流水线  </font>**[链接](./doc/detail#version-number)  



## 状态机

### Data

需要用到的主要辅助数据为以下两个:

- 白名单表: <cutter>/white_list.txt
- 权重表:<cutter>/weights_list.txt



### Format

白名单表格式:

```
Dr.
U!S!A!
No.
abbr.
Brig.
Ltd.
b.
N.
hr.
```

每行一个字符串,算法扫描到白名单中被记录字符串中的结束符号将会不计为一种象征结束的标志。



权重表:

```
and 10
or 10
but 10
even 10
however 10
whenever 10
whatever 10
although 10
thought 10
```

每行为:`word`+`weight`的格式,表示各个有转折、承接上下文等作用含义的词在需要句内切割时的权重大小。



### 介绍

以下句子作为样本:

```python
sentence = 'I like chicken. I like chicken.'
```



#### ***Sequence***

Sequence模块首先将需要切割的句子转换为某种特殊的序列格式。

```mermaid
graph LR
A[I like chicken.] -->B[I]
subgraph sequence
    B -->C[<space>]
    C -->D[like]
    D --> E[<space>]
    E --> F[chicken]
    F --> G[.]
end

```
sequence将直接进入状态机



#### ***Condition*** and ***Operation***

Condition模块表示执行某个动作之前的某个条件或者判断,若满足该条件则执行,否则执行不满足该条件的动作。

Operation模块表示某个动作或者称为操作

```mermaid
    graph LR
A{Condition} -->|True| B[Operation1]
A -->|False| C[Operation2]
    
```



#### ***Condition&Operation***模块

由一系列上图Condition&Operation组成的模块

表示一连串的判断、动作序列组合叠加

进而

```mermaid
    graph LR
A{Condition1} -->|True| B[Condition&Operation1]
A -->|False| C[Condition&Operation2]
B -->D[Condition&Operation3]
C -->E[Condition&Operation4]
```



#### ***Logic***

上述Condition&Operation模块形成了整个Logic

所有的Condition&Operation模块进一步叠加得到整个大的逻辑图



### 运行

- 导入相关包

```python
from sentence_spliter.en_cutter.en_sequence import Sequence 				# 导入英文切句框架内的sequence类
from sentence_spliter.en_cutter.logic import SimpleLogic, LongShortLogic	# 导入英文切句框架内的logic类
```

- 加载句子为sequence类

```python
sentence = 'I like chicken. I like chicken.'								# 例句
seq = Sequence(sentence)                                                    # 转化为sequence
simple_logic = SimpleLogic()												# 自然切句逻辑
long_logic = LongShortLogic(max_len=max_len, min_len=min_len)				# 切割长短句
```

- 执行切句

```
simple_result = simple_logic.run(seq, debug=True)
long_results = long_logic.run(seq, debug=True)
```



## 打包上传

- 打开setup.py,修改相应的配置(version等)

```python
from setuptools import setup, find_packages

setup(
    name="sentence-spliter",
    version="X.X.X",
    author="<your name>",
    author_email="<your email>",
	...
)
```

- 在项目根目录运行以下命令

```
./bin/package.sh
```

- 键入账号和密码

```
Enter your username: <your username>
Enter your password: <your password>
```

- 等待上传即可

详细教程可见[链接](https://packaging.python.org/en/latest/tutorials/packaging-projects/)


%package help
Summary:	Development documents and examples for sentence-spliter
Provides:	python3-sentence-spliter-doc
%description help
# sentence-spliter

[toc]

## 简介

sentence-spliter 句子切分工具:将一个长句或者段落,切分为若干短句的 List 。支持自然切分,中间切分等。

目前支持语言:中文, 英文,韩语



## Architechture

- 项目结构

```
.
├── doc								# 补充文档
├── LICENSE							# 许可证
├── MANIFEST.in						# 用于setup时包含其他文件
├── pyproject.toml					# 用于构建项目
├── README.md
├── requirements.txt
├── sentence_spliter
│   ├── architect					# 存放切句的基本单元
│   ├── cutter4grammar				# 语法纠错定制的切句
│   ├── en_cutter					# 英文切句
│   ├── test						# 单元测试
│   ├── utility						# 其他工具函数
│   └── zh_cutter					# 中文切句
└── setup.py						# setup.py
```

更详细的目录结构见 [链接](doc/detail.md)


## Setup

git 安装

```
git clone git@git.duowan.com:ai/nlp/sentence-spliter.git
pip install -U pip
pip install -r requirements.txt
```



PYPI 安装

```
pip install sentence_spliter
```



## API

### 请求示例

```
curl --location --request POST 'https://rosetta-nlp-api.duowan.com/api/v1/sentence-spliter/en-sentence-spliter' \
--header 'Content-Type: application/json' \
--data-raw '{
  "paragraphs":["A long time ago..... there is a mountain, and there is a temple in the mountain!!! And here is an old monk in the temple!?...."] ,
  "options": {
      "max_len": 30,
      "min_len": 6
  }
} '
```



- Request

```
{
  "paragraphs":["A long time ago..... there is a mountain, and there is a temple in the mountain!!! And here is an old monk in the temple!?...."] ,
  "options": {
      "max_len": 30,
      "min_len": 6
  }
} 
```



- Response

```
{
    "code": 0,
    "data": {
        "paragraphs": [
            "A long time ago..... there is a mountain, and there is a temple in the mountain!!! And here is an old monk in the temple!?...."
        ],
        "sub_sentences": [
            [
                [
                    "A long time ago..... there is a mountain, and there is a temple in the mountain!!!"
                ],
                [
                    " And here is an old monk in the temple!?...."
                ]
            ]
        ],
        "version": "1.0.0"
    },
    "message": "success"
}
```



  ### 响应参数说明

| **字段名**    | **类型** | **说明**           |
| :------------ | :------- | :----------------- |
| paragraphs    | String   | 需要切分的段落列表 |
| sub_sentences | String   | 切分完成的子句     |

接口相关更多内容见[接口文档](./doc/interface.md)

**<font color="#dd0000">特别注意:version字段改动涉及广东部门是否需要重跑流水线  </font>**[链接](./doc/detail#version-number)  



## 状态机

### Data

需要用到的主要辅助数据为以下两个:

- 白名单表: <cutter>/white_list.txt
- 权重表:<cutter>/weights_list.txt



### Format

白名单表格式:

```
Dr.
U!S!A!
No.
abbr.
Brig.
Ltd.
b.
N.
hr.
```

每行一个字符串,算法扫描到白名单中被记录字符串中的结束符号将会不计为一种象征结束的标志。



权重表:

```
and 10
or 10
but 10
even 10
however 10
whenever 10
whatever 10
although 10
thought 10
```

每行为:`word`+`weight`的格式,表示各个有转折、承接上下文等作用含义的词在需要句内切割时的权重大小。



### 介绍

以下句子作为样本:

```python
sentence = 'I like chicken. I like chicken.'
```



#### ***Sequence***

Sequence模块首先将需要切割的句子转换为某种特殊的序列格式。

```mermaid
graph LR
A[I like chicken.] -->B[I]
subgraph sequence
    B -->C[<space>]
    C -->D[like]
    D --> E[<space>]
    E --> F[chicken]
    F --> G[.]
end

```
sequence将直接进入状态机



#### ***Condition*** and ***Operation***

Condition模块表示执行某个动作之前的某个条件或者判断,若满足该条件则执行,否则执行不满足该条件的动作。

Operation模块表示某个动作或者称为操作

```mermaid
    graph LR
A{Condition} -->|True| B[Operation1]
A -->|False| C[Operation2]
    
```



#### ***Condition&Operation***模块

由一系列上图Condition&Operation组成的模块

表示一连串的判断、动作序列组合叠加

进而

```mermaid
    graph LR
A{Condition1} -->|True| B[Condition&Operation1]
A -->|False| C[Condition&Operation2]
B -->D[Condition&Operation3]
C -->E[Condition&Operation4]
```



#### ***Logic***

上述Condition&Operation模块形成了整个Logic

所有的Condition&Operation模块进一步叠加得到整个大的逻辑图



### 运行

- 导入相关包

```python
from sentence_spliter.en_cutter.en_sequence import Sequence 				# 导入英文切句框架内的sequence类
from sentence_spliter.en_cutter.logic import SimpleLogic, LongShortLogic	# 导入英文切句框架内的logic类
```

- 加载句子为sequence类

```python
sentence = 'I like chicken. I like chicken.'								# 例句
seq = Sequence(sentence)                                                    # 转化为sequence
simple_logic = SimpleLogic()												# 自然切句逻辑
long_logic = LongShortLogic(max_len=max_len, min_len=min_len)				# 切割长短句
```

- 执行切句

```
simple_result = simple_logic.run(seq, debug=True)
long_results = long_logic.run(seq, debug=True)
```



## 打包上传

- 打开setup.py,修改相应的配置(version等)

```python
from setuptools import setup, find_packages

setup(
    name="sentence-spliter",
    version="X.X.X",
    author="<your name>",
    author_email="<your email>",
	...
)
```

- 在项目根目录运行以下命令

```
./bin/package.sh
```

- 键入账号和密码

```
Enter your username: <your username>
Enter your password: <your password>
```

- 等待上传即可

详细教程可见[链接](https://packaging.python.org/en/latest/tutorials/packaging-projects/)


%prep
%autosetup -n sentence-spliter-2.1.8

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "\"/%h/%f.gz\"\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-sentence-spliter -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Fri Jun 09 2023 Python_Bot <Python_Bot@openeuler.org> - 2.1.8-1
- Package Spec generated