diff options
author | CoprDistGit <infra@openeuler.org> | 2023-06-20 08:35:14 +0000 |
---|---|---|
committer | CoprDistGit <infra@openeuler.org> | 2023-06-20 08:35:14 +0000 |
commit | ca561dcefecf01e30d1bb015979c4f9cb3ea028a (patch) | |
tree | ffb1eb7399127b5a45415144f847c7314d804c9b | |
parent | 9e68753adeec5e3c65b116dfd0fad166425b928a (diff) |
automatic import of python-shinnosuke-gpuopeneuler20.03
-rw-r--r-- | .gitignore | 1 | ||||
-rw-r--r-- | python-shinnosuke-gpu.spec | 504 | ||||
-rw-r--r-- | sources | 1 |
3 files changed, 506 insertions, 0 deletions
@@ -0,0 +1 @@ +/shinnosuke-gpu-0.7.1.tar.gz diff --git a/python-shinnosuke-gpu.spec b/python-shinnosuke-gpu.spec new file mode 100644 index 0000000..7e4d119 --- /dev/null +++ b/python-shinnosuke-gpu.spec @@ -0,0 +1,504 @@ +%global _empty_manifest_terminate_build 0 +Name: python-shinnosuke-gpu +Version: 0.7.1 +Release: 1 +Summary: A keras-like API deep learning framework,realized by cupy +License: MIT License +URL: https://github.com/eLeVeNnN/shinnosuke-gpu +Source0: https://mirrors.aliyun.com/pypi/web/packages/a2/6a/e80b0f74b2a9a7efed526697f7d616984ff93976dcc06609c3e83f8daf23/shinnosuke-gpu-0.7.1.tar.gz +BuildArch: noarch + + +%description +#Shinnosuke-GPU : Deep learning framework +##Descriptions +1. Based on Cupy(GPU version) + +2. Completely realized by Python only +3. Keras-like API +4. For deep learning studying + +##Features +1. Native to Python + +2. Keras-like API +3. Easy to get start +4. Commonly used models are provided: Dense, Conv2D, MaxPooling2D, LSTM, SimpleRNN, etc +5. Several basic networks Examples +6. Sequential model and Functional model are implemented +7. Autograd is supported + +##Installation +Using pip: + +`$ pip install shinnosuke-gpu` + +##Supports + +### Two model types: +1.**Sequential** + +```python +from shinnosuke.models import Sequential +from shinnosuke.layers.FC import Dense + +m=Sequential() + +m.add(Dense(500,activation='relu',n_in=784)) + +m.add(Dense(10,activation='softmax')) + +m.compile(optimizer='sgd',loss='sparse_categorical_crossentropy',learning_rate=0.1) + +m.fit(trainX,trainy,batch_size=512,epochs=1,validation_ratio=0.) + +``` +2.**Model** +```python +from shinnosuke.models import Model +from shinnosuke.layers.FC import Dense +from shinnosuke.layers.Base import Input + +X_input=Input(shape=(None,784)) + +X=Dense(500,activation='relu')(X_input) + +X=Dense(10,activation='softmax')(X) + +model=Model(inputs=X_input,outputs=X) + +model.compile(optimizer='sgd',loss='sparse_categorical_crossentropy',learning_rate=0.1) + +model.fit(trainX,trainy,batch_size=512,epochs=1,validation_ratio=0.) +``` +### Two basic class: +#### - Layer: + +- Dense + +- Conv2D + +- MaxPooling2D +- MeanPooling2D +- Activation +- Input +- Dropout +- BatchNormalization +- TimeDistributed +- SimpleRNN +- LSTM +- GRU (waiting for implemented) +- ZeroPadding2D +- Operations( includes Add, Minus, Multiply, Matmul, and so on basic operations for Layer and Node) + +####- Node: + +- Variable +- Constant + +###Optimizers +- StochasticGradientDescent + +- Momentum + +- RMSprop +- AdaGrad +- AdaDelta +- Adam + +Waiting for implemented more + +###Objectives + +- MeanSquaredError + +- MeanAbsoluteError + +- BinaryCrossEntropy + +- SparseCategoricalCrossEntropy + +- CategoricalCrossEntropy + +###Activations +- Relu + +- Linear + +- Sigmoid +- Tanh +- Softmax + +###Initializations +- Zeros + +- Ones + +- Uniform + +- LecunUniform +- GlorotUniform +- HeUniform +- Normal +- LecunNormal +- GlorotNormal +- HeNormal +- Orthogonal + +###Regularizes +waiting for implement. + +###Utils +- get_batches (generate mini-batch) + +- to_categorical (convert inputs to one-hot vector/matrix) +- concatenate (concatenate Nodes that have the same shape in specify axis) + +- pad_sequences (pad sequences to the same length) + +%package -n python3-shinnosuke-gpu +Summary: A keras-like API deep learning framework,realized by cupy +Provides: python-shinnosuke-gpu +BuildRequires: python3-devel +BuildRequires: python3-setuptools +BuildRequires: python3-pip +%description -n python3-shinnosuke-gpu +#Shinnosuke-GPU : Deep learning framework +##Descriptions +1. Based on Cupy(GPU version) + +2. Completely realized by Python only +3. Keras-like API +4. For deep learning studying + +##Features +1. Native to Python + +2. Keras-like API +3. Easy to get start +4. Commonly used models are provided: Dense, Conv2D, MaxPooling2D, LSTM, SimpleRNN, etc +5. Several basic networks Examples +6. Sequential model and Functional model are implemented +7. Autograd is supported + +##Installation +Using pip: + +`$ pip install shinnosuke-gpu` + +##Supports + +### Two model types: +1.**Sequential** + +```python +from shinnosuke.models import Sequential +from shinnosuke.layers.FC import Dense + +m=Sequential() + +m.add(Dense(500,activation='relu',n_in=784)) + +m.add(Dense(10,activation='softmax')) + +m.compile(optimizer='sgd',loss='sparse_categorical_crossentropy',learning_rate=0.1) + +m.fit(trainX,trainy,batch_size=512,epochs=1,validation_ratio=0.) + +``` +2.**Model** +```python +from shinnosuke.models import Model +from shinnosuke.layers.FC import Dense +from shinnosuke.layers.Base import Input + +X_input=Input(shape=(None,784)) + +X=Dense(500,activation='relu')(X_input) + +X=Dense(10,activation='softmax')(X) + +model=Model(inputs=X_input,outputs=X) + +model.compile(optimizer='sgd',loss='sparse_categorical_crossentropy',learning_rate=0.1) + +model.fit(trainX,trainy,batch_size=512,epochs=1,validation_ratio=0.) +``` +### Two basic class: +#### - Layer: + +- Dense + +- Conv2D + +- MaxPooling2D +- MeanPooling2D +- Activation +- Input +- Dropout +- BatchNormalization +- TimeDistributed +- SimpleRNN +- LSTM +- GRU (waiting for implemented) +- ZeroPadding2D +- Operations( includes Add, Minus, Multiply, Matmul, and so on basic operations for Layer and Node) + +####- Node: + +- Variable +- Constant + +###Optimizers +- StochasticGradientDescent + +- Momentum + +- RMSprop +- AdaGrad +- AdaDelta +- Adam + +Waiting for implemented more + +###Objectives + +- MeanSquaredError + +- MeanAbsoluteError + +- BinaryCrossEntropy + +- SparseCategoricalCrossEntropy + +- CategoricalCrossEntropy + +###Activations +- Relu + +- Linear + +- Sigmoid +- Tanh +- Softmax + +###Initializations +- Zeros + +- Ones + +- Uniform + +- LecunUniform +- GlorotUniform +- HeUniform +- Normal +- LecunNormal +- GlorotNormal +- HeNormal +- Orthogonal + +###Regularizes +waiting for implement. + +###Utils +- get_batches (generate mini-batch) + +- to_categorical (convert inputs to one-hot vector/matrix) +- concatenate (concatenate Nodes that have the same shape in specify axis) + +- pad_sequences (pad sequences to the same length) + +%package help +Summary: Development documents and examples for shinnosuke-gpu +Provides: python3-shinnosuke-gpu-doc +%description help +#Shinnosuke-GPU : Deep learning framework +##Descriptions +1. Based on Cupy(GPU version) + +2. Completely realized by Python only +3. Keras-like API +4. For deep learning studying + +##Features +1. Native to Python + +2. Keras-like API +3. Easy to get start +4. Commonly used models are provided: Dense, Conv2D, MaxPooling2D, LSTM, SimpleRNN, etc +5. Several basic networks Examples +6. Sequential model and Functional model are implemented +7. Autograd is supported + +##Installation +Using pip: + +`$ pip install shinnosuke-gpu` + +##Supports + +### Two model types: +1.**Sequential** + +```python +from shinnosuke.models import Sequential +from shinnosuke.layers.FC import Dense + +m=Sequential() + +m.add(Dense(500,activation='relu',n_in=784)) + +m.add(Dense(10,activation='softmax')) + +m.compile(optimizer='sgd',loss='sparse_categorical_crossentropy',learning_rate=0.1) + +m.fit(trainX,trainy,batch_size=512,epochs=1,validation_ratio=0.) + +``` +2.**Model** +```python +from shinnosuke.models import Model +from shinnosuke.layers.FC import Dense +from shinnosuke.layers.Base import Input + +X_input=Input(shape=(None,784)) + +X=Dense(500,activation='relu')(X_input) + +X=Dense(10,activation='softmax')(X) + +model=Model(inputs=X_input,outputs=X) + +model.compile(optimizer='sgd',loss='sparse_categorical_crossentropy',learning_rate=0.1) + +model.fit(trainX,trainy,batch_size=512,epochs=1,validation_ratio=0.) +``` +### Two basic class: +#### - Layer: + +- Dense + +- Conv2D + +- MaxPooling2D +- MeanPooling2D +- Activation +- Input +- Dropout +- BatchNormalization +- TimeDistributed +- SimpleRNN +- LSTM +- GRU (waiting for implemented) +- ZeroPadding2D +- Operations( includes Add, Minus, Multiply, Matmul, and so on basic operations for Layer and Node) + +####- Node: + +- Variable +- Constant + +###Optimizers +- StochasticGradientDescent + +- Momentum + +- RMSprop +- AdaGrad +- AdaDelta +- Adam + +Waiting for implemented more + +###Objectives + +- MeanSquaredError + +- MeanAbsoluteError + +- BinaryCrossEntropy + +- SparseCategoricalCrossEntropy + +- CategoricalCrossEntropy + +###Activations +- Relu + +- Linear + +- Sigmoid +- Tanh +- Softmax + +###Initializations +- Zeros + +- Ones + +- Uniform + +- LecunUniform +- GlorotUniform +- HeUniform +- Normal +- LecunNormal +- GlorotNormal +- HeNormal +- Orthogonal + +###Regularizes +waiting for implement. + +###Utils +- get_batches (generate mini-batch) + +- to_categorical (convert inputs to one-hot vector/matrix) +- concatenate (concatenate Nodes that have the same shape in specify axis) + +- pad_sequences (pad sequences to the same length) + +%prep +%autosetup -n shinnosuke-gpu-0.7.1 + +%build +%py3_build + +%install +%py3_install +install -d -m755 %{buildroot}/%{_pkgdocdir} +if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi +if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi +if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi +if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi +pushd %{buildroot} +if [ -d usr/lib ]; then + find usr/lib -type f -printf "\"/%h/%f\"\n" >> filelist.lst +fi +if [ -d usr/lib64 ]; then + find usr/lib64 -type f -printf "\"/%h/%f\"\n" >> filelist.lst +fi +if [ -d usr/bin ]; then + find usr/bin -type f -printf "\"/%h/%f\"\n" >> filelist.lst +fi +if [ -d usr/sbin ]; then + find usr/sbin -type f -printf "\"/%h/%f\"\n" >> filelist.lst +fi +touch doclist.lst +if [ -d usr/share/man ]; then + find usr/share/man -type f -printf "\"/%h/%f.gz\"\n" >> doclist.lst +fi +popd +mv %{buildroot}/filelist.lst . +mv %{buildroot}/doclist.lst . + +%files -n python3-shinnosuke-gpu -f filelist.lst +%dir %{python3_sitelib}/* + +%files help -f doclist.lst +%{_docdir}/* + +%changelog +* Tue Jun 20 2023 Python_Bot <Python_Bot@openeuler.org> - 0.7.1-1 +- Package Spec generated @@ -0,0 +1 @@ +28e6d3f9b2797dad566919dbb1fffe96 shinnosuke-gpu-0.7.1.tar.gz |