summaryrefslogtreecommitdiff
path: root/python-sigprofilerhotspots.spec
blob: 21b2353d70f99e3519be23b5827a7f7d8fdfc144 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
%global _empty_manifest_terminate_build 0
Name:		python-SigProfilerHotSpots
Version:	0.0.28
Release:	1
Summary:	SigProfilerHotSpots tool
License:	UCSD
URL:		https://pypi.org/project/SigProfilerHotSpots/
Source0:	https://mirrors.aliyun.com/pypi/web/packages/96/b5/e1fe118ee8cf7d0eb35c6c9fde6cdb08f90c677accffb4d005a04cb69999/SigProfilerHotSpots-0.0.28.tar.gz
BuildArch:	noarch

Requires:	python3-matplotlib
Requires:	python3-sigProfilerPlotting
Requires:	python3-SigProfilerMatrixGenerator
Requires:	python3-SigProfilerSimulator
Requires:	python3-statsmodels
Requires:	python3-scipy
Requires:	python3-pandas
Requires:	python3-numpy
Requires:	python3-SigProfilerExtractor

%description
[![Docs](https://img.shields.io/badge/docs-latest-blue.svg)](https://osf.io/qpmzw/wiki/home/) [![License](https://img.shields.io/badge/License-BSD\%202--Clause-orange.svg)](https://opensource.org/licenses/BSD-2-Clause) [![Build Status](https://app.travis-ci.com/AlexandrovLab/SigProfilerHotSpots.svg?branch=master)](https://app.travis-ci.com/AlexandrovLab/SigProfilerHotSpots)


# SigProfilerClusters
Tool for analyzing the inter-mutational distances between SNV-SNV and INDEL-INDEL mutations. Tool separates mutations into clustered and non-clustered groups on a sample-dependent basis and subclassifies all SNVs into a set category of clustered event: i) DBS; ii) MBS; iii) omikli; and iv) kataegis. Indels are not subclassifed. 


**INTRODUCTION**

The purpose of this document is to provide a guide for using the SigProfilerHotSpots framework. An extensive Wiki page detailing the usage of this tool can be found at https://osf.io/qpmzw/wiki/home/.


**PREREQUISITES**

The framework is written in PYTHON, and uses additional SigProfiler packages:

  * PYTHON          version 3.4 or newer
  * SigProfilerMatrixGenerator (https://github.com/AlexandrovLab/SigProfilerMatrixGenerator)
  * SigProfilerSimulator (https://github.com/AlexandrovLab/SigProfilerSimulator)

Please visit their respective GitHub pages for detailed installation and usage instructions.

**QUICK START GUIDE**

This section will guide you through the minimum steps required to perform clustered analysis:

1a. Install the python package using pip (current package):
                          pip install SigProfilerClusters

1b. Install the python package using pip (deprecated version):
                          pip install SigProfilerHotSpots

Install your desired reference genome from the command line/terminal as follows (available reference genomes are: GRCh37, GRCh38, mm9, and mm10):
```
$ python
>> from SigProfilerMatrixGenerator import install as genInstall
>> genInstall.install('GRCh37', rsync=False, bash=True)
```
This will install the human 37 assembly as a reference genome. You may install as many genomes as you wish. If you have a firewall on your server, you may need to install rsync and use the rsync=True parameter. Similarly, if you do not have bash, 
use bash=False.
2. Place your vcf files in your desired output folder. It is recommended that you name this folder based on your project's name. Before you can analyze clustered mutations, you need to generate a background model for each of your samples. To do this, generate a minimum of 100 simulations for your project (see SigProfilerSimulator for a detailed list of parameters):
```
>>from SigProfilerSimulator import SigProfilerSimulator as sigSim
>>sigSim.SigProfilerSimulator(project, project_path, genome, contexts=["96"], simulations=100, chrom_based=True)
```
3. Now the original mutations can be partitioned into clustered and non-clustered sets using the required parameters below:
```
>> from SigProfilerHotSpots import SigProfilerHotSpots as hp
>> hp.analysis(project, genome, contexts, simContext, input_path)
```
See below for a detailed list of available parameters

4. The partitioned vcf files are placed under [project_path]/ouput/vcf_files/[project]_clustered/ and  [project_path]/ouput/vcf_files/[project]_nonClustered/. You can visualize the results by looking at the IMD plots available under [project_path]/ouput/simulations/[project]_simulations_[genome]_[context]_intradistance_plots/.

**AVAILABLE PARAMETERS**

	Required:
            project:			[string] Unique name for the given project
            genome:			[string] Reference genome to use. Must be installed using SigProfilerMatrixGenerator
            contexts:			[string] Mutation context for measuring IMD (e.g. "6", "96", "1536", etc,)
            simContext: 		[list of strings] Mutations context that was used for generating the background model (e.g ["6144"] or ["96"])
            input_path:			[string] Path to the given project

    	Optional:
            analysis:	 		[string] Desired analysis pipeline. By default output_type='all'. Other options include "subClassify" and "hotspot". 
            sortSims:			[boolean] Option to sort the simulated files if they have already been sorted. By default sortSims=True to ensure accurate results. The files must be sorted for accurate results. 
            interdistance:			[string] The mutation types to calculate IMDs between - Use only when performing analysis of indels (default='ID').
            calculateIMD:		[boolean] Parameter to calculate the IMDs. This will save time if you need to rerun the subclassification step only (default=True).
            chrom_based:		[boolean] Option to generate chromosome-dependent IMDs per sample. By default chrom_based=False. 
            max_cpu:			[integer] Change the number of allocated CPUs. By default all CPUs are used
            subClassify:		[boolean] Subclassify the clustered mutations. Requires that VAF scores are available in TCGA or Sanger format. By default subClassify=False 
            plotIMDfigure:	[boolean] Parameter that generates IMD and mutational spectra plots for each sample (default=True).
            plotRainfall		[boolean] Parameter that generates rainfall plots for each sample using the subclassification of clustered events (default=True).

            The following parameters are used if the subClassify argument is True:
            includedVAFs:	[boolean] Parameter that informs the tool of the inclusion of VAFs in the dataset (default=True)
            sanger:			[boolean] The input files are from Sanger. By default sanger=True
            TCGA:			[boolean] The input files are from TCGA. By default TCGA=False
            windowSize:		[integer] Window size for calculating mutation density in the rainfall plots. By default windowSize=10000000
            correction		[boolean] Optional parameter to perform a genome-wide mutational density correction (boolean; default=False)


**LOG FILES**

All errors and progress checkpoints are saved into SigProfilerHotSpots_[project]_[genome].err and SigProfilerHotSpots_[project]_[genome].out, respectively. For all errors, please email the error and progress log files to the primary contact under CONTACT INFORMATION.

CITATION

Bergstrom EN, Luebeck J, Petljak M, Bafna V, Mischell PS, Harris RS, and Alexandrov LB (2021) Comprehensive analysis of clustered mutations in cancer reveals recurrent APOBEC3 mutagenesis of ecDNA. bioRxiv 2021.05.27.445689; doi: https://doi.org/10.1101/2021.05.27.445689

COPYRIGHT

Copyright (c) 2021, Erik Bergstrom [Alexandrov Lab] All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.

Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

CONTACT INFORMATION

Please address any queries or bug reports to Erik Bergstrom at ebergstr@eng.ucsd.edu




%package -n python3-SigProfilerHotSpots
Summary:	SigProfilerHotSpots tool
Provides:	python-SigProfilerHotSpots
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-SigProfilerHotSpots
[![Docs](https://img.shields.io/badge/docs-latest-blue.svg)](https://osf.io/qpmzw/wiki/home/) [![License](https://img.shields.io/badge/License-BSD\%202--Clause-orange.svg)](https://opensource.org/licenses/BSD-2-Clause) [![Build Status](https://app.travis-ci.com/AlexandrovLab/SigProfilerHotSpots.svg?branch=master)](https://app.travis-ci.com/AlexandrovLab/SigProfilerHotSpots)


# SigProfilerClusters
Tool for analyzing the inter-mutational distances between SNV-SNV and INDEL-INDEL mutations. Tool separates mutations into clustered and non-clustered groups on a sample-dependent basis and subclassifies all SNVs into a set category of clustered event: i) DBS; ii) MBS; iii) omikli; and iv) kataegis. Indels are not subclassifed. 


**INTRODUCTION**

The purpose of this document is to provide a guide for using the SigProfilerHotSpots framework. An extensive Wiki page detailing the usage of this tool can be found at https://osf.io/qpmzw/wiki/home/.


**PREREQUISITES**

The framework is written in PYTHON, and uses additional SigProfiler packages:

  * PYTHON          version 3.4 or newer
  * SigProfilerMatrixGenerator (https://github.com/AlexandrovLab/SigProfilerMatrixGenerator)
  * SigProfilerSimulator (https://github.com/AlexandrovLab/SigProfilerSimulator)

Please visit their respective GitHub pages for detailed installation and usage instructions.

**QUICK START GUIDE**

This section will guide you through the minimum steps required to perform clustered analysis:

1a. Install the python package using pip (current package):
                          pip install SigProfilerClusters

1b. Install the python package using pip (deprecated version):
                          pip install SigProfilerHotSpots

Install your desired reference genome from the command line/terminal as follows (available reference genomes are: GRCh37, GRCh38, mm9, and mm10):
```
$ python
>> from SigProfilerMatrixGenerator import install as genInstall
>> genInstall.install('GRCh37', rsync=False, bash=True)
```
This will install the human 37 assembly as a reference genome. You may install as many genomes as you wish. If you have a firewall on your server, you may need to install rsync and use the rsync=True parameter. Similarly, if you do not have bash, 
use bash=False.
2. Place your vcf files in your desired output folder. It is recommended that you name this folder based on your project's name. Before you can analyze clustered mutations, you need to generate a background model for each of your samples. To do this, generate a minimum of 100 simulations for your project (see SigProfilerSimulator for a detailed list of parameters):
```
>>from SigProfilerSimulator import SigProfilerSimulator as sigSim
>>sigSim.SigProfilerSimulator(project, project_path, genome, contexts=["96"], simulations=100, chrom_based=True)
```
3. Now the original mutations can be partitioned into clustered and non-clustered sets using the required parameters below:
```
>> from SigProfilerHotSpots import SigProfilerHotSpots as hp
>> hp.analysis(project, genome, contexts, simContext, input_path)
```
See below for a detailed list of available parameters

4. The partitioned vcf files are placed under [project_path]/ouput/vcf_files/[project]_clustered/ and  [project_path]/ouput/vcf_files/[project]_nonClustered/. You can visualize the results by looking at the IMD plots available under [project_path]/ouput/simulations/[project]_simulations_[genome]_[context]_intradistance_plots/.

**AVAILABLE PARAMETERS**

	Required:
            project:			[string] Unique name for the given project
            genome:			[string] Reference genome to use. Must be installed using SigProfilerMatrixGenerator
            contexts:			[string] Mutation context for measuring IMD (e.g. "6", "96", "1536", etc,)
            simContext: 		[list of strings] Mutations context that was used for generating the background model (e.g ["6144"] or ["96"])
            input_path:			[string] Path to the given project

    	Optional:
            analysis:	 		[string] Desired analysis pipeline. By default output_type='all'. Other options include "subClassify" and "hotspot". 
            sortSims:			[boolean] Option to sort the simulated files if they have already been sorted. By default sortSims=True to ensure accurate results. The files must be sorted for accurate results. 
            interdistance:			[string] The mutation types to calculate IMDs between - Use only when performing analysis of indels (default='ID').
            calculateIMD:		[boolean] Parameter to calculate the IMDs. This will save time if you need to rerun the subclassification step only (default=True).
            chrom_based:		[boolean] Option to generate chromosome-dependent IMDs per sample. By default chrom_based=False. 
            max_cpu:			[integer] Change the number of allocated CPUs. By default all CPUs are used
            subClassify:		[boolean] Subclassify the clustered mutations. Requires that VAF scores are available in TCGA or Sanger format. By default subClassify=False 
            plotIMDfigure:	[boolean] Parameter that generates IMD and mutational spectra plots for each sample (default=True).
            plotRainfall		[boolean] Parameter that generates rainfall plots for each sample using the subclassification of clustered events (default=True).

            The following parameters are used if the subClassify argument is True:
            includedVAFs:	[boolean] Parameter that informs the tool of the inclusion of VAFs in the dataset (default=True)
            sanger:			[boolean] The input files are from Sanger. By default sanger=True
            TCGA:			[boolean] The input files are from TCGA. By default TCGA=False
            windowSize:		[integer] Window size for calculating mutation density in the rainfall plots. By default windowSize=10000000
            correction		[boolean] Optional parameter to perform a genome-wide mutational density correction (boolean; default=False)


**LOG FILES**

All errors and progress checkpoints are saved into SigProfilerHotSpots_[project]_[genome].err and SigProfilerHotSpots_[project]_[genome].out, respectively. For all errors, please email the error and progress log files to the primary contact under CONTACT INFORMATION.

CITATION

Bergstrom EN, Luebeck J, Petljak M, Bafna V, Mischell PS, Harris RS, and Alexandrov LB (2021) Comprehensive analysis of clustered mutations in cancer reveals recurrent APOBEC3 mutagenesis of ecDNA. bioRxiv 2021.05.27.445689; doi: https://doi.org/10.1101/2021.05.27.445689

COPYRIGHT

Copyright (c) 2021, Erik Bergstrom [Alexandrov Lab] All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.

Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

CONTACT INFORMATION

Please address any queries or bug reports to Erik Bergstrom at ebergstr@eng.ucsd.edu




%package help
Summary:	Development documents and examples for SigProfilerHotSpots
Provides:	python3-SigProfilerHotSpots-doc
%description help
[![Docs](https://img.shields.io/badge/docs-latest-blue.svg)](https://osf.io/qpmzw/wiki/home/) [![License](https://img.shields.io/badge/License-BSD\%202--Clause-orange.svg)](https://opensource.org/licenses/BSD-2-Clause) [![Build Status](https://app.travis-ci.com/AlexandrovLab/SigProfilerHotSpots.svg?branch=master)](https://app.travis-ci.com/AlexandrovLab/SigProfilerHotSpots)


# SigProfilerClusters
Tool for analyzing the inter-mutational distances between SNV-SNV and INDEL-INDEL mutations. Tool separates mutations into clustered and non-clustered groups on a sample-dependent basis and subclassifies all SNVs into a set category of clustered event: i) DBS; ii) MBS; iii) omikli; and iv) kataegis. Indels are not subclassifed. 


**INTRODUCTION**

The purpose of this document is to provide a guide for using the SigProfilerHotSpots framework. An extensive Wiki page detailing the usage of this tool can be found at https://osf.io/qpmzw/wiki/home/.


**PREREQUISITES**

The framework is written in PYTHON, and uses additional SigProfiler packages:

  * PYTHON          version 3.4 or newer
  * SigProfilerMatrixGenerator (https://github.com/AlexandrovLab/SigProfilerMatrixGenerator)
  * SigProfilerSimulator (https://github.com/AlexandrovLab/SigProfilerSimulator)

Please visit their respective GitHub pages for detailed installation and usage instructions.

**QUICK START GUIDE**

This section will guide you through the minimum steps required to perform clustered analysis:

1a. Install the python package using pip (current package):
                          pip install SigProfilerClusters

1b. Install the python package using pip (deprecated version):
                          pip install SigProfilerHotSpots

Install your desired reference genome from the command line/terminal as follows (available reference genomes are: GRCh37, GRCh38, mm9, and mm10):
```
$ python
>> from SigProfilerMatrixGenerator import install as genInstall
>> genInstall.install('GRCh37', rsync=False, bash=True)
```
This will install the human 37 assembly as a reference genome. You may install as many genomes as you wish. If you have a firewall on your server, you may need to install rsync and use the rsync=True parameter. Similarly, if you do not have bash, 
use bash=False.
2. Place your vcf files in your desired output folder. It is recommended that you name this folder based on your project's name. Before you can analyze clustered mutations, you need to generate a background model for each of your samples. To do this, generate a minimum of 100 simulations for your project (see SigProfilerSimulator for a detailed list of parameters):
```
>>from SigProfilerSimulator import SigProfilerSimulator as sigSim
>>sigSim.SigProfilerSimulator(project, project_path, genome, contexts=["96"], simulations=100, chrom_based=True)
```
3. Now the original mutations can be partitioned into clustered and non-clustered sets using the required parameters below:
```
>> from SigProfilerHotSpots import SigProfilerHotSpots as hp
>> hp.analysis(project, genome, contexts, simContext, input_path)
```
See below for a detailed list of available parameters

4. The partitioned vcf files are placed under [project_path]/ouput/vcf_files/[project]_clustered/ and  [project_path]/ouput/vcf_files/[project]_nonClustered/. You can visualize the results by looking at the IMD plots available under [project_path]/ouput/simulations/[project]_simulations_[genome]_[context]_intradistance_plots/.

**AVAILABLE PARAMETERS**

	Required:
            project:			[string] Unique name for the given project
            genome:			[string] Reference genome to use. Must be installed using SigProfilerMatrixGenerator
            contexts:			[string] Mutation context for measuring IMD (e.g. "6", "96", "1536", etc,)
            simContext: 		[list of strings] Mutations context that was used for generating the background model (e.g ["6144"] or ["96"])
            input_path:			[string] Path to the given project

    	Optional:
            analysis:	 		[string] Desired analysis pipeline. By default output_type='all'. Other options include "subClassify" and "hotspot". 
            sortSims:			[boolean] Option to sort the simulated files if they have already been sorted. By default sortSims=True to ensure accurate results. The files must be sorted for accurate results. 
            interdistance:			[string] The mutation types to calculate IMDs between - Use only when performing analysis of indels (default='ID').
            calculateIMD:		[boolean] Parameter to calculate the IMDs. This will save time if you need to rerun the subclassification step only (default=True).
            chrom_based:		[boolean] Option to generate chromosome-dependent IMDs per sample. By default chrom_based=False. 
            max_cpu:			[integer] Change the number of allocated CPUs. By default all CPUs are used
            subClassify:		[boolean] Subclassify the clustered mutations. Requires that VAF scores are available in TCGA or Sanger format. By default subClassify=False 
            plotIMDfigure:	[boolean] Parameter that generates IMD and mutational spectra plots for each sample (default=True).
            plotRainfall		[boolean] Parameter that generates rainfall plots for each sample using the subclassification of clustered events (default=True).

            The following parameters are used if the subClassify argument is True:
            includedVAFs:	[boolean] Parameter that informs the tool of the inclusion of VAFs in the dataset (default=True)
            sanger:			[boolean] The input files are from Sanger. By default sanger=True
            TCGA:			[boolean] The input files are from TCGA. By default TCGA=False
            windowSize:		[integer] Window size for calculating mutation density in the rainfall plots. By default windowSize=10000000
            correction		[boolean] Optional parameter to perform a genome-wide mutational density correction (boolean; default=False)


**LOG FILES**

All errors and progress checkpoints are saved into SigProfilerHotSpots_[project]_[genome].err and SigProfilerHotSpots_[project]_[genome].out, respectively. For all errors, please email the error and progress log files to the primary contact under CONTACT INFORMATION.

CITATION

Bergstrom EN, Luebeck J, Petljak M, Bafna V, Mischell PS, Harris RS, and Alexandrov LB (2021) Comprehensive analysis of clustered mutations in cancer reveals recurrent APOBEC3 mutagenesis of ecDNA. bioRxiv 2021.05.27.445689; doi: https://doi.org/10.1101/2021.05.27.445689

COPYRIGHT

Copyright (c) 2021, Erik Bergstrom [Alexandrov Lab] All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.

Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

CONTACT INFORMATION

Please address any queries or bug reports to Erik Bergstrom at ebergstr@eng.ucsd.edu




%prep
%autosetup -n SigProfilerHotSpots-0.0.28

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "\"/%h/%f.gz\"\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-SigProfilerHotSpots -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Fri Jun 09 2023 Python_Bot <Python_Bot@openeuler.org> - 0.0.28-1
- Package Spec generated