1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
|
%global _empty_manifest_terminate_build 0
Name: python-simpful
Version: 2.11.0
Release: 1
Summary: A user-friendly Python library for fuzzy logic
License: LICENSE.txt
URL: https://github.com/aresio/simpful
Source0: https://mirrors.aliyun.com/pypi/web/packages/cd/d2/f4c3b7a6ce16165304df8f5472306fcfe3e07cb4e919e1022b5e231e1ce8/simpful-2.11.0.tar.gz
BuildArch: noarch
Requires: python3-numpy
Requires: python3-scipy
Requires: python3-matplotlib
Requires: python3-seaborn
%description

[](https://simpful.readthedocs.io/en/latest/?badge=latest)
# simpful
A Python library for fuzzy logic reasoning, designed to provide a simple and lightweight API, as close as possible to natural language.
Simpful supports Mamdani and Sugeno reasoning of any order, parsing any complex fuzzy rules involving AND, OR, and NOT operators, using arbitrarily shaped fuzzy sets.
For more information on its usage, try out the example scripts in this repository or check our [online documentation](https://simpful.readthedocs.io/en/latest/).
## Installation
`pip install simpful`
## Citing Simpful
If you find Simpful useful for your research, please cite our work as follows:
Spolaor S., Fuchs C., Cazzaniga P., Kaymak U., Besozzi D., Nobile M.S.: Simpful: a user-friendly Python library for fuzzy logic, International Journal of Computational Intelligence Systems, 13(1):1687–1698, 2020
[DOI:10.2991/ijcis.d.201012.002](https://doi.org/10.2991/ijcis.d.201012.002)
## Usage example 1: controlling a gas burner with a Takagi-Sugeno fuzzy system
This example shows how to specify the information about the linguistic variables, fuzzy sets, fuzzy rules, and input values to Simpful. The last line of code prints the result of the fuzzy reasoning.
```
import simpful as sf
# A simple fuzzy model describing how the heating power of a gas burner depends on the oxygen supply.
FS = sf.FuzzySystem()
# Define a linguistic variable.
S_1 = sf.FuzzySet( points=[[0, 1.], [1., 1.], [1.5, 0]], term="low_flow" )
S_2 = sf.FuzzySet( points=[[0.5, 0], [1.5, 1.], [2.5, 1], [3., 0]], term="medium_flow" )
S_3 = sf.FuzzySet( points=[[2., 0], [2.5, 1.], [3., 1.]], term="high_flow" )
FS.add_linguistic_variable("OXI", sf.LinguisticVariable( [S_1, S_2, S_3] ))
# Define consequents.
FS.set_crisp_output_value("LOW_POWER", 0)
FS.set_crisp_output_value("MEDIUM_POWER", 25)
FS.set_output_function("HIGH_FUN", "OXI**2")
# Define fuzzy rules.
RULE1 = "IF (OXI IS low_flow) THEN (POWER IS LOW_POWER)"
RULE2 = "IF (OXI IS medium_flow) THEN (POWER IS MEDIUM_POWER)"
RULE3 = "IF (NOT (OXI IS low_flow)) THEN (POWER IS HIGH_FUN)"
FS.add_rules([RULE1, RULE2, RULE3])
# Set antecedents values, perform Sugeno inference and print output values.
FS.set_variable("OXI", .51)
print (FS.Sugeno_inference(['POWER']))
```
## Usage example 2: tipping with a Mamdani fuzzy system
This second example shows how to model a FIS using Mamdani inference. It also shows some facilities
that make modeling more concise and clear: automatic Triangles (i.e., pre-baked linguistic variables
with equally spaced triangular fuzzy sets) and the automatic detection of the inference method.
```
from simpful import *
FS = FuzzySystem()
TLV = AutoTriangle(3, terms=['poor', 'average', 'good'], universe_of_discourse=[0,10])
FS.add_linguistic_variable("service", TLV)
FS.add_linguistic_variable("quality", TLV)
O1 = TriangleFuzzySet(0,0,13, term="low")
O2 = TriangleFuzzySet(0,13,25, term="medium")
O3 = TriangleFuzzySet(13,25,25, term="high")
FS.add_linguistic_variable("tip", LinguisticVariable([O1, O2, O3], universe_of_discourse=[0,25]))
FS.add_rules([
"IF (quality IS poor) OR (service IS poor) THEN (tip IS low)",
"IF (service IS average) THEN (tip IS medium)",
"IF (quality IS good) OR (service IS good) THEN (tip IS high)"
])
FS.set_variable("quality", 6.5)
FS.set_variable("service", 9.8)
tip = FS.inference()
```
## Additional examples
Additional example scripts are available in the [examples folder](https://github.com/aresio/simpful/tree/master/examples) of this GitHub and in our [Code Ocean capsule](https://codeocean.com/capsule/2230971/tree).
## Further info
Created by Marco S. Nobile at the Eindhoven University of Technology and Simone Spolaor at the University of Milano-Bicocca.
If you need further information, please write an e-mail at: marco.nobile@unive.it.
%package -n python3-simpful
Summary: A user-friendly Python library for fuzzy logic
Provides: python-simpful
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-simpful

[](https://simpful.readthedocs.io/en/latest/?badge=latest)
# simpful
A Python library for fuzzy logic reasoning, designed to provide a simple and lightweight API, as close as possible to natural language.
Simpful supports Mamdani and Sugeno reasoning of any order, parsing any complex fuzzy rules involving AND, OR, and NOT operators, using arbitrarily shaped fuzzy sets.
For more information on its usage, try out the example scripts in this repository or check our [online documentation](https://simpful.readthedocs.io/en/latest/).
## Installation
`pip install simpful`
## Citing Simpful
If you find Simpful useful for your research, please cite our work as follows:
Spolaor S., Fuchs C., Cazzaniga P., Kaymak U., Besozzi D., Nobile M.S.: Simpful: a user-friendly Python library for fuzzy logic, International Journal of Computational Intelligence Systems, 13(1):1687–1698, 2020
[DOI:10.2991/ijcis.d.201012.002](https://doi.org/10.2991/ijcis.d.201012.002)
## Usage example 1: controlling a gas burner with a Takagi-Sugeno fuzzy system
This example shows how to specify the information about the linguistic variables, fuzzy sets, fuzzy rules, and input values to Simpful. The last line of code prints the result of the fuzzy reasoning.
```
import simpful as sf
# A simple fuzzy model describing how the heating power of a gas burner depends on the oxygen supply.
FS = sf.FuzzySystem()
# Define a linguistic variable.
S_1 = sf.FuzzySet( points=[[0, 1.], [1., 1.], [1.5, 0]], term="low_flow" )
S_2 = sf.FuzzySet( points=[[0.5, 0], [1.5, 1.], [2.5, 1], [3., 0]], term="medium_flow" )
S_3 = sf.FuzzySet( points=[[2., 0], [2.5, 1.], [3., 1.]], term="high_flow" )
FS.add_linguistic_variable("OXI", sf.LinguisticVariable( [S_1, S_2, S_3] ))
# Define consequents.
FS.set_crisp_output_value("LOW_POWER", 0)
FS.set_crisp_output_value("MEDIUM_POWER", 25)
FS.set_output_function("HIGH_FUN", "OXI**2")
# Define fuzzy rules.
RULE1 = "IF (OXI IS low_flow) THEN (POWER IS LOW_POWER)"
RULE2 = "IF (OXI IS medium_flow) THEN (POWER IS MEDIUM_POWER)"
RULE3 = "IF (NOT (OXI IS low_flow)) THEN (POWER IS HIGH_FUN)"
FS.add_rules([RULE1, RULE2, RULE3])
# Set antecedents values, perform Sugeno inference and print output values.
FS.set_variable("OXI", .51)
print (FS.Sugeno_inference(['POWER']))
```
## Usage example 2: tipping with a Mamdani fuzzy system
This second example shows how to model a FIS using Mamdani inference. It also shows some facilities
that make modeling more concise and clear: automatic Triangles (i.e., pre-baked linguistic variables
with equally spaced triangular fuzzy sets) and the automatic detection of the inference method.
```
from simpful import *
FS = FuzzySystem()
TLV = AutoTriangle(3, terms=['poor', 'average', 'good'], universe_of_discourse=[0,10])
FS.add_linguistic_variable("service", TLV)
FS.add_linguistic_variable("quality", TLV)
O1 = TriangleFuzzySet(0,0,13, term="low")
O2 = TriangleFuzzySet(0,13,25, term="medium")
O3 = TriangleFuzzySet(13,25,25, term="high")
FS.add_linguistic_variable("tip", LinguisticVariable([O1, O2, O3], universe_of_discourse=[0,25]))
FS.add_rules([
"IF (quality IS poor) OR (service IS poor) THEN (tip IS low)",
"IF (service IS average) THEN (tip IS medium)",
"IF (quality IS good) OR (service IS good) THEN (tip IS high)"
])
FS.set_variable("quality", 6.5)
FS.set_variable("service", 9.8)
tip = FS.inference()
```
## Additional examples
Additional example scripts are available in the [examples folder](https://github.com/aresio/simpful/tree/master/examples) of this GitHub and in our [Code Ocean capsule](https://codeocean.com/capsule/2230971/tree).
## Further info
Created by Marco S. Nobile at the Eindhoven University of Technology and Simone Spolaor at the University of Milano-Bicocca.
If you need further information, please write an e-mail at: marco.nobile@unive.it.
%package help
Summary: Development documents and examples for simpful
Provides: python3-simpful-doc
%description help

[](https://simpful.readthedocs.io/en/latest/?badge=latest)
# simpful
A Python library for fuzzy logic reasoning, designed to provide a simple and lightweight API, as close as possible to natural language.
Simpful supports Mamdani and Sugeno reasoning of any order, parsing any complex fuzzy rules involving AND, OR, and NOT operators, using arbitrarily shaped fuzzy sets.
For more information on its usage, try out the example scripts in this repository or check our [online documentation](https://simpful.readthedocs.io/en/latest/).
## Installation
`pip install simpful`
## Citing Simpful
If you find Simpful useful for your research, please cite our work as follows:
Spolaor S., Fuchs C., Cazzaniga P., Kaymak U., Besozzi D., Nobile M.S.: Simpful: a user-friendly Python library for fuzzy logic, International Journal of Computational Intelligence Systems, 13(1):1687–1698, 2020
[DOI:10.2991/ijcis.d.201012.002](https://doi.org/10.2991/ijcis.d.201012.002)
## Usage example 1: controlling a gas burner with a Takagi-Sugeno fuzzy system
This example shows how to specify the information about the linguistic variables, fuzzy sets, fuzzy rules, and input values to Simpful. The last line of code prints the result of the fuzzy reasoning.
```
import simpful as sf
# A simple fuzzy model describing how the heating power of a gas burner depends on the oxygen supply.
FS = sf.FuzzySystem()
# Define a linguistic variable.
S_1 = sf.FuzzySet( points=[[0, 1.], [1., 1.], [1.5, 0]], term="low_flow" )
S_2 = sf.FuzzySet( points=[[0.5, 0], [1.5, 1.], [2.5, 1], [3., 0]], term="medium_flow" )
S_3 = sf.FuzzySet( points=[[2., 0], [2.5, 1.], [3., 1.]], term="high_flow" )
FS.add_linguistic_variable("OXI", sf.LinguisticVariable( [S_1, S_2, S_3] ))
# Define consequents.
FS.set_crisp_output_value("LOW_POWER", 0)
FS.set_crisp_output_value("MEDIUM_POWER", 25)
FS.set_output_function("HIGH_FUN", "OXI**2")
# Define fuzzy rules.
RULE1 = "IF (OXI IS low_flow) THEN (POWER IS LOW_POWER)"
RULE2 = "IF (OXI IS medium_flow) THEN (POWER IS MEDIUM_POWER)"
RULE3 = "IF (NOT (OXI IS low_flow)) THEN (POWER IS HIGH_FUN)"
FS.add_rules([RULE1, RULE2, RULE3])
# Set antecedents values, perform Sugeno inference and print output values.
FS.set_variable("OXI", .51)
print (FS.Sugeno_inference(['POWER']))
```
## Usage example 2: tipping with a Mamdani fuzzy system
This second example shows how to model a FIS using Mamdani inference. It also shows some facilities
that make modeling more concise and clear: automatic Triangles (i.e., pre-baked linguistic variables
with equally spaced triangular fuzzy sets) and the automatic detection of the inference method.
```
from simpful import *
FS = FuzzySystem()
TLV = AutoTriangle(3, terms=['poor', 'average', 'good'], universe_of_discourse=[0,10])
FS.add_linguistic_variable("service", TLV)
FS.add_linguistic_variable("quality", TLV)
O1 = TriangleFuzzySet(0,0,13, term="low")
O2 = TriangleFuzzySet(0,13,25, term="medium")
O3 = TriangleFuzzySet(13,25,25, term="high")
FS.add_linguistic_variable("tip", LinguisticVariable([O1, O2, O3], universe_of_discourse=[0,25]))
FS.add_rules([
"IF (quality IS poor) OR (service IS poor) THEN (tip IS low)",
"IF (service IS average) THEN (tip IS medium)",
"IF (quality IS good) OR (service IS good) THEN (tip IS high)"
])
FS.set_variable("quality", 6.5)
FS.set_variable("service", 9.8)
tip = FS.inference()
```
## Additional examples
Additional example scripts are available in the [examples folder](https://github.com/aresio/simpful/tree/master/examples) of this GitHub and in our [Code Ocean capsule](https://codeocean.com/capsule/2230971/tree).
## Further info
Created by Marco S. Nobile at the Eindhoven University of Technology and Simone Spolaor at the University of Milano-Bicocca.
If you need further information, please write an e-mail at: marco.nobile@unive.it.
%prep
%autosetup -n simpful-2.11.0
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "\"/%h/%f.gz\"\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-simpful -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Fri Jun 09 2023 Python_Bot <Python_Bot@openeuler.org> - 2.11.0-1
- Package Spec generated
|