summaryrefslogtreecommitdiff
path: root/python-simple-keyword-clusterer.spec
blob: d15061dc5a87f3f36edc941f15473ec1f271eb43 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
%global _empty_manifest_terminate_build 0
Name:		python-simple-keyword-clusterer
Version:	1.3
Release:	1
Summary:	Extract higher level clusters from keywords
License:	MIT
URL:		https://github.com/andrea-dagostino/simple_keyword_clusterer
Source0:	https://mirrors.aliyun.com/pypi/web/packages/35/30/21f001506df400d86addedb0f235f471a8c584edc96c26b6457bd9ec9082/simple_keyword_clusterer-1.3.tar.gz
BuildArch:	noarch

Requires:	python3-scikit-learn
Requires:	python3-tqdm
Requires:	python3-seaborn
Requires:	python3-numpy
Requires:	python3-nltk
Requires:	python3-matplotlib
Requires:	python3-pandas

%description
# Simple Keyword Clusterer
A simple machine learning package to cluster keywords in higher-level groups.

Example:<br>
*"Senior Frontend Engineer" --> "Frontend Engineer"*<br>
*"Junior Backend developer" --> "Backend developer"*
___
## Installation
```
pip install simple_keyword_clusterer
```
## Usage
```python
# import the package
from simple_keyword_clusterer import Clusterer

# read your keywords in list
with open("../my_keywords.txt", "r") as f:
    data = f.read().splitlines()

# instantiate object
clusterer = Clusterer()

# apply clustering
df = clusterer.extract(data)

print(df)
```
<img src="https://github.com/Tangelus/simple_keyword_clusterer/raw/master/images/clustering_sample.png" alt="clustering_example" width="600"/>


## Performance
The algorithm will find the optimal number of clusters automatically based on the best Silhouette Score.

You can specify the number of clusters yourself too

```python
# instantiate object
clusterer = Clusterer(n_clusters=4)

# apply clustering
df = clusterer.extract(data)
```

For best performance, try to reduce the variance of data by providing the same semantic context <br>
(the *job title* keywords file should remain coherent, in that it shouldn't contain other stuff like *gardening* keywords). <br>

If items are clearly separable, the algorithm should still be able to provide a useable output.

## Customization
You can customize the clustering mechanism through the files 
- blacklist.txt
- to_normalize.txt

If you notice that the clustering identifies unwanted groups, you can blacklist certain words simply by appending them in the blacklist.txt file.

The to_normalize.txt file contains tuples that identify a transformation to apply to the keyword. For instance
```
("back end", "backend), ("front end", "frontend), ("sr", "Senior"), ("jr", "junior")
```
Simply add your tuples to use this functionality.


## Dependencies
- Scikit-learn
- Pandas
- Matplotlib
- Seaborn
- Numpy
- NLTK
- Tqdm

Make sure to download NLTK English stopwords and punctuation with the command

```python
nltk.download("stopwords")
nltk.download('punkt')
```

## Contact
If you feel like contacting me, do so and send me a mail. You can find my contact information on my [website](https://andreadagostino.com).




%package -n python3-simple-keyword-clusterer
Summary:	Extract higher level clusters from keywords
Provides:	python-simple-keyword-clusterer
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-simple-keyword-clusterer
# Simple Keyword Clusterer
A simple machine learning package to cluster keywords in higher-level groups.

Example:<br>
*"Senior Frontend Engineer" --> "Frontend Engineer"*<br>
*"Junior Backend developer" --> "Backend developer"*
___
## Installation
```
pip install simple_keyword_clusterer
```
## Usage
```python
# import the package
from simple_keyword_clusterer import Clusterer

# read your keywords in list
with open("../my_keywords.txt", "r") as f:
    data = f.read().splitlines()

# instantiate object
clusterer = Clusterer()

# apply clustering
df = clusterer.extract(data)

print(df)
```
<img src="https://github.com/Tangelus/simple_keyword_clusterer/raw/master/images/clustering_sample.png" alt="clustering_example" width="600"/>


## Performance
The algorithm will find the optimal number of clusters automatically based on the best Silhouette Score.

You can specify the number of clusters yourself too

```python
# instantiate object
clusterer = Clusterer(n_clusters=4)

# apply clustering
df = clusterer.extract(data)
```

For best performance, try to reduce the variance of data by providing the same semantic context <br>
(the *job title* keywords file should remain coherent, in that it shouldn't contain other stuff like *gardening* keywords). <br>

If items are clearly separable, the algorithm should still be able to provide a useable output.

## Customization
You can customize the clustering mechanism through the files 
- blacklist.txt
- to_normalize.txt

If you notice that the clustering identifies unwanted groups, you can blacklist certain words simply by appending them in the blacklist.txt file.

The to_normalize.txt file contains tuples that identify a transformation to apply to the keyword. For instance
```
("back end", "backend), ("front end", "frontend), ("sr", "Senior"), ("jr", "junior")
```
Simply add your tuples to use this functionality.


## Dependencies
- Scikit-learn
- Pandas
- Matplotlib
- Seaborn
- Numpy
- NLTK
- Tqdm

Make sure to download NLTK English stopwords and punctuation with the command

```python
nltk.download("stopwords")
nltk.download('punkt')
```

## Contact
If you feel like contacting me, do so and send me a mail. You can find my contact information on my [website](https://andreadagostino.com).




%package help
Summary:	Development documents and examples for simple-keyword-clusterer
Provides:	python3-simple-keyword-clusterer-doc
%description help
# Simple Keyword Clusterer
A simple machine learning package to cluster keywords in higher-level groups.

Example:<br>
*"Senior Frontend Engineer" --> "Frontend Engineer"*<br>
*"Junior Backend developer" --> "Backend developer"*
___
## Installation
```
pip install simple_keyword_clusterer
```
## Usage
```python
# import the package
from simple_keyword_clusterer import Clusterer

# read your keywords in list
with open("../my_keywords.txt", "r") as f:
    data = f.read().splitlines()

# instantiate object
clusterer = Clusterer()

# apply clustering
df = clusterer.extract(data)

print(df)
```
<img src="https://github.com/Tangelus/simple_keyword_clusterer/raw/master/images/clustering_sample.png" alt="clustering_example" width="600"/>


## Performance
The algorithm will find the optimal number of clusters automatically based on the best Silhouette Score.

You can specify the number of clusters yourself too

```python
# instantiate object
clusterer = Clusterer(n_clusters=4)

# apply clustering
df = clusterer.extract(data)
```

For best performance, try to reduce the variance of data by providing the same semantic context <br>
(the *job title* keywords file should remain coherent, in that it shouldn't contain other stuff like *gardening* keywords). <br>

If items are clearly separable, the algorithm should still be able to provide a useable output.

## Customization
You can customize the clustering mechanism through the files 
- blacklist.txt
- to_normalize.txt

If you notice that the clustering identifies unwanted groups, you can blacklist certain words simply by appending them in the blacklist.txt file.

The to_normalize.txt file contains tuples that identify a transformation to apply to the keyword. For instance
```
("back end", "backend), ("front end", "frontend), ("sr", "Senior"), ("jr", "junior")
```
Simply add your tuples to use this functionality.


## Dependencies
- Scikit-learn
- Pandas
- Matplotlib
- Seaborn
- Numpy
- NLTK
- Tqdm

Make sure to download NLTK English stopwords and punctuation with the command

```python
nltk.download("stopwords")
nltk.download('punkt')
```

## Contact
If you feel like contacting me, do so and send me a mail. You can find my contact information on my [website](https://andreadagostino.com).




%prep
%autosetup -n simple_keyword_clusterer-1.3

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "\"/%h/%f.gz\"\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-simple-keyword-clusterer -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Tue Jun 20 2023 Python_Bot <Python_Bot@openeuler.org> - 1.3-1
- Package Spec generated