summaryrefslogtreecommitdiff
path: root/python-soda-sql-core.spec
blob: 51b7b40d3311d08511a38931932241bc8c614eaa (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
%global _empty_manifest_terminate_build 0
Name:		python-soda-sql-core
Version:	2.2.2
Release:	1
Summary:	Soda SQL library & CLI
License:	Apache Software License
URL:		https://pypi.org/project/soda-sql-core/
Source0:	https://mirrors.nju.edu.cn/pypi/web/packages/bb/5b/16a61b4e206e03f78ecea9e8bdff5f96601d119cb891777156f997b51587/soda-sql-core-2.2.2.tar.gz
BuildArch:	noarch

Requires:	python3-markupsafe
Requires:	python3-Jinja2
Requires:	python3-click
Requires:	python3-pyyaml
Requires:	python3-requests
Requires:	python3-Deprecated
Requires:	python3-opentelemetry-api
Requires:	python3-opentelemetry-exporter-otlp-proto-http
Requires:	python3-protobuf

%description
<p align="center"><img src="https://raw.githubusercontent.com/sodadata/docs/main/assets/images/soda-banner.png" alt="Soda logo" /></p>

<h1 align="center">Soda SQL</h1>
<p align="center"><b>Data testing, monitoring and profiling for SQL accessible data.</b></p>

<p align="center">
  <a href="https://github.com/sodadata/soda-sql/blob/main/LICENSE"><img src="https://img.shields.io/badge/license-Apache%202-blue.svg" alt="License: Apache 2.0"></a>
  <a href="https://join.slack.com/t/soda-community/shared_invite/zt-m77gajo1-nXJF7JtbbRht2zwaiLb9pg"><img alt="Slack" src="https://img.shields.io/badge/chat-slack-green.svg"></a>
  <a href="https://pypi.org/project/soda-sql/"><img alt="Pypi Soda SQL" src="https://img.shields.io/badge/pypi-soda%20sql-green.svg"></a>
  <a href="https://github.com/sodadata/soda-sql/actions/workflows/build.yml"><img alt="Build soda-sql" src="https://github.com/sodadata/soda-sql/actions/workflows/build.yml/badge.svg"></a>
</p>

**What does Soda SQL do?**

Soda SQL allows you to

 * Stop your pipeline when bad data is detected
 * Extract metrics and column profiles through super efficient SQL
 * Full control over metrics and queries through declarative config files

**Why Soda SQL?**

To protect against silent data issues for the consumers of your data,
it's best-practice to profile and test your data:

 * as it lands in your warehouse,
 * after every important data processing step
 * right before consumption.

This way you will prevent delivery of bad data to downstream consumers.
You will spend less time firefighting and gain a better reputation.

**How does Soda SQL work?**

Soda SQL is a Command Line Interface (CLI) and a Python library to measure
and test your data using SQL.

As input, Soda SQL uses YAML configuration files that include:
 * SQL connection details
 * What metrics to compute
 * What tests to run on the measurements

Based on those configuration files, Soda SQL will perform scans.  A scan
performs all measurements and runs all tests associated with one table.  Typically
a scan is executed after new data has arrived.  All soda-sql configuration files
can be checked into your version control system as part of your pipeline
code.

> Want to try Soda SQL? Head over to our ['Quick start tutorial'](https://docs.soda.io/soda-sql/getting-started/5_min_tutorial.html) and get started straight away!

**"[Show me the metrics](https://www.youtube.com/watch?v=1-mOKMq19zU)"**

Let's walk through an example. Simple metrics and tests can be configured in scan YAML configuration
files. An example of the contents of such a file:

```yaml
metrics:
    - row_count
    - missing_count
    - missing_percentage
    - values_count
    - values_percentage
    - valid_count
    - valid_percentage
    - invalid_count
    - invalid_percentage
    - min
    - max
    - avg
    - sum
    - min_length
    - max_length
    - avg_length
    - distinct
    - unique_count
    - duplicate_count
    - uniqueness
    - maxs
    - mins
    - frequent_values
    - histogram
columns:
    ID:
        metrics:
            - distinct
            - duplicate_count
        valid_format: uuid
        tests:
            duplicate_count == 0
    CATEGORY:
        missing_values:
            - N/A
            - No category
        tests:
            missing_percentage < 3
    SIZE:
        tests:
            max - min < 20
sql_metrics:
    - sql: |
        SELECT sum(volume) as total_volume_us
        FROM CUSTOMER_TRANSACTIONS
        WHERE country = 'US'
      tests:
        - total_volume_us > 5000
```

Based on these configuration files, Soda SQL will scan your data
each time new data arrived like this:

```bash
$ soda scan ./soda/metrics my_warehouse my_dataset
Soda 1.0 scan for dataset my_dataset on prod my_warehouse
  | SELECT column_name, data_type, is_nullable
  | FROM information_schema.columns
  | WHERE lower(table_name) = 'customers'
  |   AND table_catalog = 'datasource.database'
  |   AND table_schema = 'datasource.schema'
  - 0.256 seconds
Found 4 columns: ID, NAME, CREATE_DATE, COUNTRY
  | SELECT
  |  COUNT(*),
  |  COUNT(CASE WHEN ID IS NULL THEN 1 END),
  |  COUNT(CASE WHEN ID IS NOT NULL AND ID regexp '\b[0-9a-f]{8}\b-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{4}-\b[0-9a-f]{12}\b' THEN 1 END),
  |  MIN(LENGTH(ID)),
  |  AVG(LENGTH(ID)),
  |  MAX(LENGTH(ID)),
  | FROM customers
  - 0.557 seconds
row_count : 23543
missing   : 23
invalid   : 0
min_length: 9
avg_length: 9
max_length: 9

...more queries...

47 measurements computed
23 tests executed
All is good. No tests failed. Scan took 23.307 seconds
```

The next step is to add Soda SQL scans in your favorite
data pipeline orchestration solution like:

* Airflow
* AWS Glue
* Prefect
* Dagster
* Fivetran
* Matillion
* Luigi

If you like the goals of this project, encourage us! Star [sodadata/soda-sql on Github](https://github.com/sodadata/soda-sql).

> Next, head over to our ['Quick start tutorial'](https://docs.soda.io/soda-sql/getting-started/5_min_tutorial.html) and get your first project going!


%package -n python3-soda-sql-core
Summary:	Soda SQL library & CLI
Provides:	python-soda-sql-core
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-soda-sql-core
<p align="center"><img src="https://raw.githubusercontent.com/sodadata/docs/main/assets/images/soda-banner.png" alt="Soda logo" /></p>

<h1 align="center">Soda SQL</h1>
<p align="center"><b>Data testing, monitoring and profiling for SQL accessible data.</b></p>

<p align="center">
  <a href="https://github.com/sodadata/soda-sql/blob/main/LICENSE"><img src="https://img.shields.io/badge/license-Apache%202-blue.svg" alt="License: Apache 2.0"></a>
  <a href="https://join.slack.com/t/soda-community/shared_invite/zt-m77gajo1-nXJF7JtbbRht2zwaiLb9pg"><img alt="Slack" src="https://img.shields.io/badge/chat-slack-green.svg"></a>
  <a href="https://pypi.org/project/soda-sql/"><img alt="Pypi Soda SQL" src="https://img.shields.io/badge/pypi-soda%20sql-green.svg"></a>
  <a href="https://github.com/sodadata/soda-sql/actions/workflows/build.yml"><img alt="Build soda-sql" src="https://github.com/sodadata/soda-sql/actions/workflows/build.yml/badge.svg"></a>
</p>

**What does Soda SQL do?**

Soda SQL allows you to

 * Stop your pipeline when bad data is detected
 * Extract metrics and column profiles through super efficient SQL
 * Full control over metrics and queries through declarative config files

**Why Soda SQL?**

To protect against silent data issues for the consumers of your data,
it's best-practice to profile and test your data:

 * as it lands in your warehouse,
 * after every important data processing step
 * right before consumption.

This way you will prevent delivery of bad data to downstream consumers.
You will spend less time firefighting and gain a better reputation.

**How does Soda SQL work?**

Soda SQL is a Command Line Interface (CLI) and a Python library to measure
and test your data using SQL.

As input, Soda SQL uses YAML configuration files that include:
 * SQL connection details
 * What metrics to compute
 * What tests to run on the measurements

Based on those configuration files, Soda SQL will perform scans.  A scan
performs all measurements and runs all tests associated with one table.  Typically
a scan is executed after new data has arrived.  All soda-sql configuration files
can be checked into your version control system as part of your pipeline
code.

> Want to try Soda SQL? Head over to our ['Quick start tutorial'](https://docs.soda.io/soda-sql/getting-started/5_min_tutorial.html) and get started straight away!

**"[Show me the metrics](https://www.youtube.com/watch?v=1-mOKMq19zU)"**

Let's walk through an example. Simple metrics and tests can be configured in scan YAML configuration
files. An example of the contents of such a file:

```yaml
metrics:
    - row_count
    - missing_count
    - missing_percentage
    - values_count
    - values_percentage
    - valid_count
    - valid_percentage
    - invalid_count
    - invalid_percentage
    - min
    - max
    - avg
    - sum
    - min_length
    - max_length
    - avg_length
    - distinct
    - unique_count
    - duplicate_count
    - uniqueness
    - maxs
    - mins
    - frequent_values
    - histogram
columns:
    ID:
        metrics:
            - distinct
            - duplicate_count
        valid_format: uuid
        tests:
            duplicate_count == 0
    CATEGORY:
        missing_values:
            - N/A
            - No category
        tests:
            missing_percentage < 3
    SIZE:
        tests:
            max - min < 20
sql_metrics:
    - sql: |
        SELECT sum(volume) as total_volume_us
        FROM CUSTOMER_TRANSACTIONS
        WHERE country = 'US'
      tests:
        - total_volume_us > 5000
```

Based on these configuration files, Soda SQL will scan your data
each time new data arrived like this:

```bash
$ soda scan ./soda/metrics my_warehouse my_dataset
Soda 1.0 scan for dataset my_dataset on prod my_warehouse
  | SELECT column_name, data_type, is_nullable
  | FROM information_schema.columns
  | WHERE lower(table_name) = 'customers'
  |   AND table_catalog = 'datasource.database'
  |   AND table_schema = 'datasource.schema'
  - 0.256 seconds
Found 4 columns: ID, NAME, CREATE_DATE, COUNTRY
  | SELECT
  |  COUNT(*),
  |  COUNT(CASE WHEN ID IS NULL THEN 1 END),
  |  COUNT(CASE WHEN ID IS NOT NULL AND ID regexp '\b[0-9a-f]{8}\b-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{4}-\b[0-9a-f]{12}\b' THEN 1 END),
  |  MIN(LENGTH(ID)),
  |  AVG(LENGTH(ID)),
  |  MAX(LENGTH(ID)),
  | FROM customers
  - 0.557 seconds
row_count : 23543
missing   : 23
invalid   : 0
min_length: 9
avg_length: 9
max_length: 9

...more queries...

47 measurements computed
23 tests executed
All is good. No tests failed. Scan took 23.307 seconds
```

The next step is to add Soda SQL scans in your favorite
data pipeline orchestration solution like:

* Airflow
* AWS Glue
* Prefect
* Dagster
* Fivetran
* Matillion
* Luigi

If you like the goals of this project, encourage us! Star [sodadata/soda-sql on Github](https://github.com/sodadata/soda-sql).

> Next, head over to our ['Quick start tutorial'](https://docs.soda.io/soda-sql/getting-started/5_min_tutorial.html) and get your first project going!


%package help
Summary:	Development documents and examples for soda-sql-core
Provides:	python3-soda-sql-core-doc
%description help
<p align="center"><img src="https://raw.githubusercontent.com/sodadata/docs/main/assets/images/soda-banner.png" alt="Soda logo" /></p>

<h1 align="center">Soda SQL</h1>
<p align="center"><b>Data testing, monitoring and profiling for SQL accessible data.</b></p>

<p align="center">
  <a href="https://github.com/sodadata/soda-sql/blob/main/LICENSE"><img src="https://img.shields.io/badge/license-Apache%202-blue.svg" alt="License: Apache 2.0"></a>
  <a href="https://join.slack.com/t/soda-community/shared_invite/zt-m77gajo1-nXJF7JtbbRht2zwaiLb9pg"><img alt="Slack" src="https://img.shields.io/badge/chat-slack-green.svg"></a>
  <a href="https://pypi.org/project/soda-sql/"><img alt="Pypi Soda SQL" src="https://img.shields.io/badge/pypi-soda%20sql-green.svg"></a>
  <a href="https://github.com/sodadata/soda-sql/actions/workflows/build.yml"><img alt="Build soda-sql" src="https://github.com/sodadata/soda-sql/actions/workflows/build.yml/badge.svg"></a>
</p>

**What does Soda SQL do?**

Soda SQL allows you to

 * Stop your pipeline when bad data is detected
 * Extract metrics and column profiles through super efficient SQL
 * Full control over metrics and queries through declarative config files

**Why Soda SQL?**

To protect against silent data issues for the consumers of your data,
it's best-practice to profile and test your data:

 * as it lands in your warehouse,
 * after every important data processing step
 * right before consumption.

This way you will prevent delivery of bad data to downstream consumers.
You will spend less time firefighting and gain a better reputation.

**How does Soda SQL work?**

Soda SQL is a Command Line Interface (CLI) and a Python library to measure
and test your data using SQL.

As input, Soda SQL uses YAML configuration files that include:
 * SQL connection details
 * What metrics to compute
 * What tests to run on the measurements

Based on those configuration files, Soda SQL will perform scans.  A scan
performs all measurements and runs all tests associated with one table.  Typically
a scan is executed after new data has arrived.  All soda-sql configuration files
can be checked into your version control system as part of your pipeline
code.

> Want to try Soda SQL? Head over to our ['Quick start tutorial'](https://docs.soda.io/soda-sql/getting-started/5_min_tutorial.html) and get started straight away!

**"[Show me the metrics](https://www.youtube.com/watch?v=1-mOKMq19zU)"**

Let's walk through an example. Simple metrics and tests can be configured in scan YAML configuration
files. An example of the contents of such a file:

```yaml
metrics:
    - row_count
    - missing_count
    - missing_percentage
    - values_count
    - values_percentage
    - valid_count
    - valid_percentage
    - invalid_count
    - invalid_percentage
    - min
    - max
    - avg
    - sum
    - min_length
    - max_length
    - avg_length
    - distinct
    - unique_count
    - duplicate_count
    - uniqueness
    - maxs
    - mins
    - frequent_values
    - histogram
columns:
    ID:
        metrics:
            - distinct
            - duplicate_count
        valid_format: uuid
        tests:
            duplicate_count == 0
    CATEGORY:
        missing_values:
            - N/A
            - No category
        tests:
            missing_percentage < 3
    SIZE:
        tests:
            max - min < 20
sql_metrics:
    - sql: |
        SELECT sum(volume) as total_volume_us
        FROM CUSTOMER_TRANSACTIONS
        WHERE country = 'US'
      tests:
        - total_volume_us > 5000
```

Based on these configuration files, Soda SQL will scan your data
each time new data arrived like this:

```bash
$ soda scan ./soda/metrics my_warehouse my_dataset
Soda 1.0 scan for dataset my_dataset on prod my_warehouse
  | SELECT column_name, data_type, is_nullable
  | FROM information_schema.columns
  | WHERE lower(table_name) = 'customers'
  |   AND table_catalog = 'datasource.database'
  |   AND table_schema = 'datasource.schema'
  - 0.256 seconds
Found 4 columns: ID, NAME, CREATE_DATE, COUNTRY
  | SELECT
  |  COUNT(*),
  |  COUNT(CASE WHEN ID IS NULL THEN 1 END),
  |  COUNT(CASE WHEN ID IS NOT NULL AND ID regexp '\b[0-9a-f]{8}\b-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{4}-\b[0-9a-f]{12}\b' THEN 1 END),
  |  MIN(LENGTH(ID)),
  |  AVG(LENGTH(ID)),
  |  MAX(LENGTH(ID)),
  | FROM customers
  - 0.557 seconds
row_count : 23543
missing   : 23
invalid   : 0
min_length: 9
avg_length: 9
max_length: 9

...more queries...

47 measurements computed
23 tests executed
All is good. No tests failed. Scan took 23.307 seconds
```

The next step is to add Soda SQL scans in your favorite
data pipeline orchestration solution like:

* Airflow
* AWS Glue
* Prefect
* Dagster
* Fivetran
* Matillion
* Luigi

If you like the goals of this project, encourage us! Star [sodadata/soda-sql on Github](https://github.com/sodadata/soda-sql).

> Next, head over to our ['Quick start tutorial'](https://docs.soda.io/soda-sql/getting-started/5_min_tutorial.html) and get your first project going!


%prep
%autosetup -n soda-sql-core-2.2.2

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-soda-sql-core -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Fri May 05 2023 Python_Bot <Python_Bot@openeuler.org> - 2.2.2-1
- Package Spec generated