summaryrefslogtreecommitdiff
path: root/python-sortednp.spec
blob: 828eccbc6bf25f5f4d73ba7ef6d30a189a4f741e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
%global _empty_manifest_terminate_build 0
Name:		python-sortednp
Version:	0.4.0
Release:	1
Summary:	Merge and intersect sorted numpy arrays.
License:	MIT
URL:		https://gitlab.sauerburger.com/frank/sortednp
Source0:	https://mirrors.nju.edu.cn/pypi/web/packages/a8/88/6f9a9175a1f72dce1f9f39a7678c56d001c42b858c648a22598993e7de98/sortednp-0.4.0.tar.gz
BuildArch:	noarch

Requires:	python3-numpy

%description
# Sortednp

[![Pipeline](https://gitlab.sauerburger.com/frank/sortednp/badges/master/pipeline.svg)](https://gitlab.sauerburger.com/frank/sortednp/-/pipelines)
[![Pylint](https://gitlab.sauerburger.com/frank/sortednp/-/jobs/artifacts/master/raw/pylint.svg?job=pylint)](https://gitlab.sauerburger.com/frank/sortednp)
[![C++ lint](https://gitlab.sauerburger.com/frank/sortednp/-/jobs/artifacts/master/raw/cxxlint.svg?job=cpplint)](https://gitlab.sauerburger.com/frank/sortednp)
[![License](https://gitlab.sauerburger.com/frank/sortednp/-/jobs/artifacts/master/raw/license.svg?job=badges)](https://gitlab.sauerburger.com/frank/sortednp/-/blob/master/LICENSE)
[![PyPI](https://gitlab.sauerburger.com/frank/sortednp/-/jobs/artifacts/master/raw/pypi.svg?job=badges)](https://pypi.org/project/sortednp/)

Numpy and Numpy arrays are a really great tool. However, intersecting and
merging multiple sorted numpy arrays is rather less performant. The current numpy
implementation concatenates the two arrays and sorts the combination. If you
want to merge or intersect multiple numpy arrays, there is a much faster way,
by using the property, that the resulting array is sorted.

Sortednp (sorted numpy) operates on sorted numpy arrays to calculate the
intersection or the union of two numpy arrays in an efficient way. The
resulting array is again a sorted numpy array, which can be merged or
intersected with the next array. The intended use case is that sorted numpy
arrays are sorted as the basic data structure and merged or intersected at
request. Typical applications include information retrieval and search engines
in particular.

It is also possible to implement a k-way merging or intersecting algorithm,
which operates on an arbitrary number of arrays at the same time. This package
is intended to deal with arrays with $`10^6`$ or $`10^{10}`$ items. Usually, these
arrays are too large to keep more than two of them in memory at the same
time. This package implements methods to merge and intersect multiple arrays,
which can be loaded on-demand.

## Installation
There are two different methods to install `sortednp`.

### Using `pip` (recommended)

You can install the package directly from PyPI using `pip` (here `pip3`). There are
pre-compiled wheels for `linux` 32- and 64bit.

```bash
$ pip3 install sortednp
```

### Using `setuptools`

Alternatively, you can clone the git repository and run the
setup script.

```bash
$ git clone https://gitlab.sauerburger.com/frank/sortednp.git
$ cd sortednp
$ python3 setup.py install
```
### Numpy Dependency
The installation fails in some cases, because of a build-time dependency on
numpy. Usually, the problem can be solved by manually installing a recent numpy
version via `pip3 install -U numpy`.

## Usage

The package provides two different kinds of methods. The first class is intended
to operate on two arrays. The second class operates on two or more arrays and
calls the first class of methods internally.

### Two-way methods

Two numpy sorted arrays can be merged with the `merge` method, which takes two
numpy arrays and returns the sorted union of the two arrays.

<!-- write merge.py -->
```python
## merge.py
import numpy as np
import sortednp as snp

a = np.array([0, 3, 4, 6, 7])
b = np.array([1, 2, 3, 5, 7, 9])

m = snp.merge(a, b)
print(m)
```

If you run this, you should see the union of both arrays as a sorted numpy
array.
<!-- console_output -->
```python
$ python3 merge.py
[0 1 2 3 3 4 5 6 7 7 9]
```

Two sorted numpy arrays can be intersected with the `intersect` method, which takes two
numpy arrays and returns the sorted intersection of the two arrays.

<!-- write intersect.py -->
```python
## intersect.py
import numpy as np
import sortednp as snp

a = np.array([0, 3, 4, 6, 7])
b = np.array([1, 2, 3, 5, 7, 9])

i = snp.intersect(a, b)
print(i)
```

If you run this, you should see the intersection of both arrays as a sorted numpy
array.
<!-- console_output -->
```python
$ python3 intersect.py
[3 7]
```

Since version 0.4.0, the library provides the `issubset(a, b)` method which
checks if the array `a` is a subset of `b`, and the `isitem(v, a)` method which
checks if `value` is contained in array `a`.

<!-- write set.py -->
```python
## set.py
import numpy as np
import sortednp as snp

a = np.array([2, 4, 5, 10])
b = np.array([1, 2, 3, 4, 5, 6, 10, 11])

print(snp.issubset(a, b))  # a is subset of b
print(snp.issubset(b, a))  # b is not a subset of a

print(snp.isitem(4, a))  # 4 is an item of a
print(snp.isitem(3, a))  # 3 is not an item of a

```

If you execute this example, you get the expected result: `a` is a subset ob
`b`, `4` is a member of `a`.

<!-- console_output -->
```python
$ python3 set.py
True
False
True
False
```


### Returning array indices
The `intersect` method takes an optional argument `indices` which is `False`
by default. If this is set to `True`, the return value consists of the
intersection array and a tuple with the indices of the common values for both
arrays. The index arrays have the length of the output. The indices show the
position in the input from which the value was copied.

<!-- write intersect_indices.py -->
```python
## intersect_indices.py
import numpy as np
import sortednp as snp

a = np.array([2,4,6,8,10])
b = np.array([1,2,3,4])

intersection, indices = snp.intersect(a,b, indices=True)

print(intersection)
print(indices)
```

The above example gives:
<!-- console_output -->
```python
$ python3 intersect_indices.py
[2 4]
(array([0, 1]), array([1, 3]))
```

The first line shows the intersection of the two arrays. The second line
prints a tuple with the indices where the common values appeared in the input
arrays. For example, the value `4` is at position `1` in array `a` and at position
`3` in array `b`. 


Since version 0.3.0, the `merge` has to `indices` argument too. The returned
indices have the length of the inputs. The indices show the position in the
output to which an input value was copied.

<!-- write merge_indices.py -->
```python
## merge_indices.py
import numpy as np
import sortednp as snp

a = np.array([2,4])
b = np.array([3,4,5])

merged, indices = snp.merge(a,b, indices=True)

print(merged)
print(indices)
```

The above example gives:
<!-- console_output -->
```python
$ python3 merge_indices.py
[2 3 4 4 5]
(array([0, 2]), array([1, 3, 4]))
```

The first line shows that the two arrays have been merged. The second line
prints a tuple with the indices. For example, the value `3` from array `b` can
be found at position `1` in the output.

### Duplicate treatment

Since version 0.3.0, sortednp supported multiple different strategies to deal
with duplicated entries.

#### Duplicates during intersecting

There are three different duplicate treatments for the intersect method:

 - `sortednp.DROP`: Ignore any duplicated entries. The output will 
   contain only unique values.

 - `sortednp.KEEP_MIN_N`: If an entry occurs `n` times in one input array and `m`
   times in the other input array, the output will contain the entry `min(n, m)`
   times.

 - `sortednp.KEEP_MAX_N`: If an entry occurs `n` times in one input array and `m`
   times in the other input array, the output will contain the entry `max(n, m)`
   times (assuming the entry occurs at least once in both arrays, i.e.
   `n > 0` and `m > 0`).


The strategy can be selected with the optional `duplicates` argument of
`intersect`. The default is `sortednp.KEEP_MIN_N`. Consider the following example.

<!-- write intersect_duplicates.py -->
```python
## intersect_duplicates.py
import numpy as np
import sortednp as snp

a = np.array([2, 4, 4, 5])    # Twice
b = np.array([3, 4, 4, 4, 5]) # Three times

intersect_drop = snp.intersect(a, b, duplicates=snp.DROP)
print(intersect_drop)  # Contains a single 4

intersect_min = snp.intersect(a, b, duplicates=snp.KEEP_MIN_N)
print(intersect_min)  # Contains 4 twice

intersect_max = snp.intersect(a, b, duplicates=snp.KEEP_MAX_N)
print(intersect_max)  # Contains 4 three times
```

The above example gives:
<!-- console_output -->
```python
$ python3 intersect_duplicates.py
[4 5]
[4 4 5]
[4 4 4 5]
```


#### Duplicates during merging

The `merge` method offers three different duplicates treatment strategies:

 - `sortednp.DROP`: Ignore any duplicated entries. The output will 
   contain only unique values.

 - `sortednp.DROP_IN_INPUT`: Ignores duplicated entries in the input arrays
   separately. This is the same as ensuring that each input array unique values.
   The output contains every value at most twice.

 - `sortednp.KEEP`: Keep all duplicated entries. If an item occurs `n` times in
   one input array and `m` times in the other input array, the output contains
   the item `n + m` times.

The strategy can be selected with the optional `duplicates`.
The default is `sortednp.KEEP`. Consider the following example.

<!-- write merge_duplicates.py -->
```python
## merge_duplicates.py
import numpy as np
import sortednp as snp

a = np.array([2, 4, 4, 5])    # Twice
b = np.array([3, 4, 4, 4, 5]) # Three times

merge_drop = snp.merge(a, b, duplicates=snp.DROP)
print(merge_drop)  # Contains a single 4

merge_dii = snp.merge(a, b, duplicates=snp.DROP_IN_INPUT)
print(merge_dii)  # Contains 4 twice

merge_keep = snp.merge(a, b, duplicates=snp.KEEP)
print(merge_keep)  # Contains 4 five times
```

The above example gives:
<!-- console_output -->
```python
$ python3 merge_duplicates.py
[2 3 4 5]
[2 3 4 4 5 5]
[2 3 4 4 4 4 4 5 5]
```

#### Duplicates during subset checks

The `issubset` method offers two different duplicates treatment strategies:

 - `sortednp.IGNORE`: Ignore any duplications. The method returns True if each
   value in the first array is contained at least once in the second array.
   Duplicated entries in the first array do not change the return value.

 - `sortednp.REPEAT`: For each duplicated item in the first array, require at
   least as many items in the second array. If for one value the first array
   contains more duplicated entries than the second array, the method returns
   False.

The strategy can be selected with the optional `duplicates`.
The default is `sortednp.IGNORE`. Consider the following example.

<!-- write subset_duplicates.py -->
```python
## subset_duplicates.py
import numpy as np
import sortednp as snp

a = np.array([3, 4, 4, 5])    # Twice
b = np.array([3, 4, 4, 4, 5]) # Three times

# Number of occurances ignored
print(snp.issubset(a, b, duplicates=snp.IGNORE))  # is subset
print(snp.issubset(b, a, duplicates=snp.IGNORE))  # is subset

# Number of in subset must be smaller or equal
print(snp.issubset(a, b, duplicates=snp.REPEAT))  # is subset

# three 4s not subset of two 4s
print(snp.issubset(b, a, duplicates=snp.REPEAT))
```

The above example gives:
<!-- console_output -->
```python
$ python3 subset_duplicates.py
True
True
True
False
```

#### Index tracking and duplicates

Tracking indices with the `indices=True` argument is possible while selecting a
non-default duplicate treatment strategy. For merging the indices point to the
position in the output array. If the input has duplicates that were skipped, the
index is simply repeated. For example with `snp.DROP`, if the input is `[9, 9,
9, 9]`, the index array for this input contains four times the position where
`9` is found in the output.

Similarly, with `snp.KEEP_MAX_N` and `intersect`, the index of the last item in
the array with less occurrences is duplicates.

<!-- write duplicates_index.py -->
```python
## duplicates_index.py
import numpy as np
import sortednp as snp

a = np.array([2, 4, 4, 5])    # Twice
b = np.array([3, 4, 4, 4, 5]) # Three times

# Merge
merge_drop, (index_a, index_b) = snp.merge(a, b,
                                           duplicates=snp.DROP,
                                           indices=True)
print(index_b)

# Intersect
intersect_max, (index_a, index_b) = snp.intersect(a, b,
                                                  duplicates=snp.KEEP_MAX_N,
                                                  indices=True)
print(index_a)
```

The above example gives:
<!-- console_output -->
```python
$ python3 duplicates_index.py
[1 2 2 2 3]
[1 2 2 3]
```

For merging, this means that the three `4`s from the input all appear at same position
in the output, namely position `2`.

For the intersect, this means that the second and third occurrence of `4` in the
output, both came from item at position `2` in the input.

### k-way methods
Similarly, the k-way intersect and merge methods take two or more arrays and
perform the merge or intersect operation on its arguments.

<!-- write kway_intersect.py -->
```python
## kway_intersect.py
import numpy as np
import sortednp as snp

a = np.array([0, 3, 4, 6, 7])
b = np.array([0, 3, 5, 7, 9])
c = np.array([1, 2, 3, 5, 7, 9])
d = np.array([2, 3, 6, 7, 8])

i = snp.kway_intersect(a, b, c, d)
print(i)
```

If you run this, you should see the intersection of all four arrays as a sorted numpy
array.
<!-- console_output -->
```python
$ python3 kway_intersect.py
[3 7]
```

The k-way merger `sortednp.kway_merge` works analogously. However, the native
`numpy` implementation is faster compared to the merge provided by this package.
The k-way merger has been added for completeness. The package `heapq` provides
efficient methods to merge multiple arrays simultaneously.

The methods `kway_merge` and `kway_intersect` accept the optional keyword
argument `assume_sorted`. By default, it is set to `True`. If it is set to `False`,
the method calls `sort()` on the input arrays before performing the operation.
The default should be kept if the arrays are already sorted to save the time it
takes to sort the arrays.

Since the arrays might be too large to keep all of them in memory at the same
time, it is possible to pass a `callable` instead of an array to the methods.
The `callable` is expected to return the actual array. It is called immediately
before the array is required. This reduces the memory consumption.

### Algorithms
Intersections are calculated by iterating both arrays. For a given element in
one array, the method needs to search the other and check if the element is
contained. In order to make this more efficient, we can use the fact that the
arrays are sorted. There are three search methods, which can be selected via the
optional keyword argument `algorithm`.

 * `sortednp.SIMPLE_SEARCH`: Search for an element by linearly iterating over the
   array element-by-element.
   [More Information](https://en.wikipedia.org/wiki/Linear_search).
 * `sortednp.BINARY_SEARCH`: Slice the remainder of the array in halves and
   repeat the procedure on the slice which contains the searched element.
   [More Information](https://en.wikipedia.org/wiki/Binary_search_algorithm).
 * `sortednp.GALLOPING_SEARCH`: First, search for an element linearly, doubling
   the step size after each step. If a step goes beyond the search element,
   perform a binary search between the last two positions.
   [More Information](https://en.wikipedia.org/wiki/Exponential_search).

The default is `sortednp.GALLOPING_SEARCH`. The performance of all three
algorithms is compared in the next section. The methods `issubset()` and
`isitem()` also support the algorithm keyword.

## Performance
The performance of the package can be compared with the default implementation
of numpy, the intersect1d` method. The ratio of the execution time between sortednp and numpy is
shown for various different benchmark tests.

The merge or intersect time can be estimated under two different assumptions. If
the arrays, which are merged or intersected, are already sorted, one should not
consider the time it takes to sort the random arrays in the benchmark. On the
other hand, if one considers a scenario in which the arrays are not sorted, one
should take the sorting time into account. The benchmarks here on this page,
assume that the arrays are already sorted. If you would like to benchmark the
package and include the sorting time, have a look at the methods defined in
`ci/benchmark.py`.

The random scattering of the points indicates the uncertainty caused by random
load fluctuations on the benchmark machine (Spikes of serveral orders of
magnitude usualy mean that there was a shortage of memory and large chunks had
to be moved to SWAP.)

### Intersect

The performance of the intersection operation depends on the sparseness of the
two arrays. For example, if the first element of one of the arrays is larger
than all elements in the other array, only the other array has to be searched
(linearly, binarily, or exponentially). Similarly, if the common elements are
far apart in the arrays (sparseness), large chunks of the arrays can be skipped.
The arrays in the benchmark contain random (unique) integers. The sparseness is
defined as the average difference between two consecutive elements in one array.

The first set of tests studies the performance dependence on the size of the
arrays. The second set of tests studies the dependence on the sparseness of the
array for a fixed size of array. Every shows a color-coded comparison of the
performance of intersecting more than two arrays.

<table>
  <tr>
    <th>Test</th>
    <th>Simple Search</th>
    <th>Binary Search</th>
    <th>Galloping Search</th>
  </tr>
  <tr>
    <th>Intersect</th>
    <td> <img src="https://gitlab.sauerburger.com/frank/sortednp/-/jobs/artifacts/master/raw/bm_intersect_assume_sorted_simple.png?job=benchmark" /> </td>
    <td> <img src="https://gitlab.sauerburger.com/frank/sortednp/-/jobs/artifacts/master/raw/bm_intersect_assume_sorted_binary.png?job=benchmark" /> </td>
    <td> <img src="https://gitlab.sauerburger.com/frank/sortednp/-/jobs/artifacts/master/raw/bm_intersect_assume_sorted_galloping.png?job=benchmark" /> </td>
  </tr>
  <tr>
    <th>Sparseness</th>
    <td> <img src="https://gitlab.sauerburger.com/frank/sortednp/-/jobs/artifacts/master/raw/bm_sparseness_assume_sorted_simple.png?job=benchmark" /> </td>
    <td> <img src="https://gitlab.sauerburger.com/frank/sortednp/-/jobs/artifacts/master/raw/bm_sparseness_assume_sorted_binary.png?job=benchmark" /> </td>
    <td> <img src="https://gitlab.sauerburger.com/frank/sortednp/-/jobs/artifacts/master/raw/bm_sparseness_assume_sorted_galloping.png?job=benchmark" /> </td>
  </tr>
</table>

### Merge
The following chart shows the performance of merging 2 or more arrays as a
function of the array size. It is assumed that the arrays are already sorted.
<img src="https://gitlab.sauerburger.com/frank/sortednp/-/jobs/artifacts/master/raw/bm_merge_assume_sorted.png?job=benchmark" /> 




%package -n python3-sortednp
Summary:	Merge and intersect sorted numpy arrays.
Provides:	python-sortednp
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-sortednp
# Sortednp

[![Pipeline](https://gitlab.sauerburger.com/frank/sortednp/badges/master/pipeline.svg)](https://gitlab.sauerburger.com/frank/sortednp/-/pipelines)
[![Pylint](https://gitlab.sauerburger.com/frank/sortednp/-/jobs/artifacts/master/raw/pylint.svg?job=pylint)](https://gitlab.sauerburger.com/frank/sortednp)
[![C++ lint](https://gitlab.sauerburger.com/frank/sortednp/-/jobs/artifacts/master/raw/cxxlint.svg?job=cpplint)](https://gitlab.sauerburger.com/frank/sortednp)
[![License](https://gitlab.sauerburger.com/frank/sortednp/-/jobs/artifacts/master/raw/license.svg?job=badges)](https://gitlab.sauerburger.com/frank/sortednp/-/blob/master/LICENSE)
[![PyPI](https://gitlab.sauerburger.com/frank/sortednp/-/jobs/artifacts/master/raw/pypi.svg?job=badges)](https://pypi.org/project/sortednp/)

Numpy and Numpy arrays are a really great tool. However, intersecting and
merging multiple sorted numpy arrays is rather less performant. The current numpy
implementation concatenates the two arrays and sorts the combination. If you
want to merge or intersect multiple numpy arrays, there is a much faster way,
by using the property, that the resulting array is sorted.

Sortednp (sorted numpy) operates on sorted numpy arrays to calculate the
intersection or the union of two numpy arrays in an efficient way. The
resulting array is again a sorted numpy array, which can be merged or
intersected with the next array. The intended use case is that sorted numpy
arrays are sorted as the basic data structure and merged or intersected at
request. Typical applications include information retrieval and search engines
in particular.

It is also possible to implement a k-way merging or intersecting algorithm,
which operates on an arbitrary number of arrays at the same time. This package
is intended to deal with arrays with $`10^6`$ or $`10^{10}`$ items. Usually, these
arrays are too large to keep more than two of them in memory at the same
time. This package implements methods to merge and intersect multiple arrays,
which can be loaded on-demand.

## Installation
There are two different methods to install `sortednp`.

### Using `pip` (recommended)

You can install the package directly from PyPI using `pip` (here `pip3`). There are
pre-compiled wheels for `linux` 32- and 64bit.

```bash
$ pip3 install sortednp
```

### Using `setuptools`

Alternatively, you can clone the git repository and run the
setup script.

```bash
$ git clone https://gitlab.sauerburger.com/frank/sortednp.git
$ cd sortednp
$ python3 setup.py install
```
### Numpy Dependency
The installation fails in some cases, because of a build-time dependency on
numpy. Usually, the problem can be solved by manually installing a recent numpy
version via `pip3 install -U numpy`.

## Usage

The package provides two different kinds of methods. The first class is intended
to operate on two arrays. The second class operates on two or more arrays and
calls the first class of methods internally.

### Two-way methods

Two numpy sorted arrays can be merged with the `merge` method, which takes two
numpy arrays and returns the sorted union of the two arrays.

<!-- write merge.py -->
```python
## merge.py
import numpy as np
import sortednp as snp

a = np.array([0, 3, 4, 6, 7])
b = np.array([1, 2, 3, 5, 7, 9])

m = snp.merge(a, b)
print(m)
```

If you run this, you should see the union of both arrays as a sorted numpy
array.
<!-- console_output -->
```python
$ python3 merge.py
[0 1 2 3 3 4 5 6 7 7 9]
```

Two sorted numpy arrays can be intersected with the `intersect` method, which takes two
numpy arrays and returns the sorted intersection of the two arrays.

<!-- write intersect.py -->
```python
## intersect.py
import numpy as np
import sortednp as snp

a = np.array([0, 3, 4, 6, 7])
b = np.array([1, 2, 3, 5, 7, 9])

i = snp.intersect(a, b)
print(i)
```

If you run this, you should see the intersection of both arrays as a sorted numpy
array.
<!-- console_output -->
```python
$ python3 intersect.py
[3 7]
```

Since version 0.4.0, the library provides the `issubset(a, b)` method which
checks if the array `a` is a subset of `b`, and the `isitem(v, a)` method which
checks if `value` is contained in array `a`.

<!-- write set.py -->
```python
## set.py
import numpy as np
import sortednp as snp

a = np.array([2, 4, 5, 10])
b = np.array([1, 2, 3, 4, 5, 6, 10, 11])

print(snp.issubset(a, b))  # a is subset of b
print(snp.issubset(b, a))  # b is not a subset of a

print(snp.isitem(4, a))  # 4 is an item of a
print(snp.isitem(3, a))  # 3 is not an item of a

```

If you execute this example, you get the expected result: `a` is a subset ob
`b`, `4` is a member of `a`.

<!-- console_output -->
```python
$ python3 set.py
True
False
True
False
```


### Returning array indices
The `intersect` method takes an optional argument `indices` which is `False`
by default. If this is set to `True`, the return value consists of the
intersection array and a tuple with the indices of the common values for both
arrays. The index arrays have the length of the output. The indices show the
position in the input from which the value was copied.

<!-- write intersect_indices.py -->
```python
## intersect_indices.py
import numpy as np
import sortednp as snp

a = np.array([2,4,6,8,10])
b = np.array([1,2,3,4])

intersection, indices = snp.intersect(a,b, indices=True)

print(intersection)
print(indices)
```

The above example gives:
<!-- console_output -->
```python
$ python3 intersect_indices.py
[2 4]
(array([0, 1]), array([1, 3]))
```

The first line shows the intersection of the two arrays. The second line
prints a tuple with the indices where the common values appeared in the input
arrays. For example, the value `4` is at position `1` in array `a` and at position
`3` in array `b`. 


Since version 0.3.0, the `merge` has to `indices` argument too. The returned
indices have the length of the inputs. The indices show the position in the
output to which an input value was copied.

<!-- write merge_indices.py -->
```python
## merge_indices.py
import numpy as np
import sortednp as snp

a = np.array([2,4])
b = np.array([3,4,5])

merged, indices = snp.merge(a,b, indices=True)

print(merged)
print(indices)
```

The above example gives:
<!-- console_output -->
```python
$ python3 merge_indices.py
[2 3 4 4 5]
(array([0, 2]), array([1, 3, 4]))
```

The first line shows that the two arrays have been merged. The second line
prints a tuple with the indices. For example, the value `3` from array `b` can
be found at position `1` in the output.

### Duplicate treatment

Since version 0.3.0, sortednp supported multiple different strategies to deal
with duplicated entries.

#### Duplicates during intersecting

There are three different duplicate treatments for the intersect method:

 - `sortednp.DROP`: Ignore any duplicated entries. The output will 
   contain only unique values.

 - `sortednp.KEEP_MIN_N`: If an entry occurs `n` times in one input array and `m`
   times in the other input array, the output will contain the entry `min(n, m)`
   times.

 - `sortednp.KEEP_MAX_N`: If an entry occurs `n` times in one input array and `m`
   times in the other input array, the output will contain the entry `max(n, m)`
   times (assuming the entry occurs at least once in both arrays, i.e.
   `n > 0` and `m > 0`).


The strategy can be selected with the optional `duplicates` argument of
`intersect`. The default is `sortednp.KEEP_MIN_N`. Consider the following example.

<!-- write intersect_duplicates.py -->
```python
## intersect_duplicates.py
import numpy as np
import sortednp as snp

a = np.array([2, 4, 4, 5])    # Twice
b = np.array([3, 4, 4, 4, 5]) # Three times

intersect_drop = snp.intersect(a, b, duplicates=snp.DROP)
print(intersect_drop)  # Contains a single 4

intersect_min = snp.intersect(a, b, duplicates=snp.KEEP_MIN_N)
print(intersect_min)  # Contains 4 twice

intersect_max = snp.intersect(a, b, duplicates=snp.KEEP_MAX_N)
print(intersect_max)  # Contains 4 three times
```

The above example gives:
<!-- console_output -->
```python
$ python3 intersect_duplicates.py
[4 5]
[4 4 5]
[4 4 4 5]
```


#### Duplicates during merging

The `merge` method offers three different duplicates treatment strategies:

 - `sortednp.DROP`: Ignore any duplicated entries. The output will 
   contain only unique values.

 - `sortednp.DROP_IN_INPUT`: Ignores duplicated entries in the input arrays
   separately. This is the same as ensuring that each input array unique values.
   The output contains every value at most twice.

 - `sortednp.KEEP`: Keep all duplicated entries. If an item occurs `n` times in
   one input array and `m` times in the other input array, the output contains
   the item `n + m` times.

The strategy can be selected with the optional `duplicates`.
The default is `sortednp.KEEP`. Consider the following example.

<!-- write merge_duplicates.py -->
```python
## merge_duplicates.py
import numpy as np
import sortednp as snp

a = np.array([2, 4, 4, 5])    # Twice
b = np.array([3, 4, 4, 4, 5]) # Three times

merge_drop = snp.merge(a, b, duplicates=snp.DROP)
print(merge_drop)  # Contains a single 4

merge_dii = snp.merge(a, b, duplicates=snp.DROP_IN_INPUT)
print(merge_dii)  # Contains 4 twice

merge_keep = snp.merge(a, b, duplicates=snp.KEEP)
print(merge_keep)  # Contains 4 five times
```

The above example gives:
<!-- console_output -->
```python
$ python3 merge_duplicates.py
[2 3 4 5]
[2 3 4 4 5 5]
[2 3 4 4 4 4 4 5 5]
```

#### Duplicates during subset checks

The `issubset` method offers two different duplicates treatment strategies:

 - `sortednp.IGNORE`: Ignore any duplications. The method returns True if each
   value in the first array is contained at least once in the second array.
   Duplicated entries in the first array do not change the return value.

 - `sortednp.REPEAT`: For each duplicated item in the first array, require at
   least as many items in the second array. If for one value the first array
   contains more duplicated entries than the second array, the method returns
   False.

The strategy can be selected with the optional `duplicates`.
The default is `sortednp.IGNORE`. Consider the following example.

<!-- write subset_duplicates.py -->
```python
## subset_duplicates.py
import numpy as np
import sortednp as snp

a = np.array([3, 4, 4, 5])    # Twice
b = np.array([3, 4, 4, 4, 5]) # Three times

# Number of occurances ignored
print(snp.issubset(a, b, duplicates=snp.IGNORE))  # is subset
print(snp.issubset(b, a, duplicates=snp.IGNORE))  # is subset

# Number of in subset must be smaller or equal
print(snp.issubset(a, b, duplicates=snp.REPEAT))  # is subset

# three 4s not subset of two 4s
print(snp.issubset(b, a, duplicates=snp.REPEAT))
```

The above example gives:
<!-- console_output -->
```python
$ python3 subset_duplicates.py
True
True
True
False
```

#### Index tracking and duplicates

Tracking indices with the `indices=True` argument is possible while selecting a
non-default duplicate treatment strategy. For merging the indices point to the
position in the output array. If the input has duplicates that were skipped, the
index is simply repeated. For example with `snp.DROP`, if the input is `[9, 9,
9, 9]`, the index array for this input contains four times the position where
`9` is found in the output.

Similarly, with `snp.KEEP_MAX_N` and `intersect`, the index of the last item in
the array with less occurrences is duplicates.

<!-- write duplicates_index.py -->
```python
## duplicates_index.py
import numpy as np
import sortednp as snp

a = np.array([2, 4, 4, 5])    # Twice
b = np.array([3, 4, 4, 4, 5]) # Three times

# Merge
merge_drop, (index_a, index_b) = snp.merge(a, b,
                                           duplicates=snp.DROP,
                                           indices=True)
print(index_b)

# Intersect
intersect_max, (index_a, index_b) = snp.intersect(a, b,
                                                  duplicates=snp.KEEP_MAX_N,
                                                  indices=True)
print(index_a)
```

The above example gives:
<!-- console_output -->
```python
$ python3 duplicates_index.py
[1 2 2 2 3]
[1 2 2 3]
```

For merging, this means that the three `4`s from the input all appear at same position
in the output, namely position `2`.

For the intersect, this means that the second and third occurrence of `4` in the
output, both came from item at position `2` in the input.

### k-way methods
Similarly, the k-way intersect and merge methods take two or more arrays and
perform the merge or intersect operation on its arguments.

<!-- write kway_intersect.py -->
```python
## kway_intersect.py
import numpy as np
import sortednp as snp

a = np.array([0, 3, 4, 6, 7])
b = np.array([0, 3, 5, 7, 9])
c = np.array([1, 2, 3, 5, 7, 9])
d = np.array([2, 3, 6, 7, 8])

i = snp.kway_intersect(a, b, c, d)
print(i)
```

If you run this, you should see the intersection of all four arrays as a sorted numpy
array.
<!-- console_output -->
```python
$ python3 kway_intersect.py
[3 7]
```

The k-way merger `sortednp.kway_merge` works analogously. However, the native
`numpy` implementation is faster compared to the merge provided by this package.
The k-way merger has been added for completeness. The package `heapq` provides
efficient methods to merge multiple arrays simultaneously.

The methods `kway_merge` and `kway_intersect` accept the optional keyword
argument `assume_sorted`. By default, it is set to `True`. If it is set to `False`,
the method calls `sort()` on the input arrays before performing the operation.
The default should be kept if the arrays are already sorted to save the time it
takes to sort the arrays.

Since the arrays might be too large to keep all of them in memory at the same
time, it is possible to pass a `callable` instead of an array to the methods.
The `callable` is expected to return the actual array. It is called immediately
before the array is required. This reduces the memory consumption.

### Algorithms
Intersections are calculated by iterating both arrays. For a given element in
one array, the method needs to search the other and check if the element is
contained. In order to make this more efficient, we can use the fact that the
arrays are sorted. There are three search methods, which can be selected via the
optional keyword argument `algorithm`.

 * `sortednp.SIMPLE_SEARCH`: Search for an element by linearly iterating over the
   array element-by-element.
   [More Information](https://en.wikipedia.org/wiki/Linear_search).
 * `sortednp.BINARY_SEARCH`: Slice the remainder of the array in halves and
   repeat the procedure on the slice which contains the searched element.
   [More Information](https://en.wikipedia.org/wiki/Binary_search_algorithm).
 * `sortednp.GALLOPING_SEARCH`: First, search for an element linearly, doubling
   the step size after each step. If a step goes beyond the search element,
   perform a binary search between the last two positions.
   [More Information](https://en.wikipedia.org/wiki/Exponential_search).

The default is `sortednp.GALLOPING_SEARCH`. The performance of all three
algorithms is compared in the next section. The methods `issubset()` and
`isitem()` also support the algorithm keyword.

## Performance
The performance of the package can be compared with the default implementation
of numpy, the intersect1d` method. The ratio of the execution time between sortednp and numpy is
shown for various different benchmark tests.

The merge or intersect time can be estimated under two different assumptions. If
the arrays, which are merged or intersected, are already sorted, one should not
consider the time it takes to sort the random arrays in the benchmark. On the
other hand, if one considers a scenario in which the arrays are not sorted, one
should take the sorting time into account. The benchmarks here on this page,
assume that the arrays are already sorted. If you would like to benchmark the
package and include the sorting time, have a look at the methods defined in
`ci/benchmark.py`.

The random scattering of the points indicates the uncertainty caused by random
load fluctuations on the benchmark machine (Spikes of serveral orders of
magnitude usualy mean that there was a shortage of memory and large chunks had
to be moved to SWAP.)

### Intersect

The performance of the intersection operation depends on the sparseness of the
two arrays. For example, if the first element of one of the arrays is larger
than all elements in the other array, only the other array has to be searched
(linearly, binarily, or exponentially). Similarly, if the common elements are
far apart in the arrays (sparseness), large chunks of the arrays can be skipped.
The arrays in the benchmark contain random (unique) integers. The sparseness is
defined as the average difference between two consecutive elements in one array.

The first set of tests studies the performance dependence on the size of the
arrays. The second set of tests studies the dependence on the sparseness of the
array for a fixed size of array. Every shows a color-coded comparison of the
performance of intersecting more than two arrays.

<table>
  <tr>
    <th>Test</th>
    <th>Simple Search</th>
    <th>Binary Search</th>
    <th>Galloping Search</th>
  </tr>
  <tr>
    <th>Intersect</th>
    <td> <img src="https://gitlab.sauerburger.com/frank/sortednp/-/jobs/artifacts/master/raw/bm_intersect_assume_sorted_simple.png?job=benchmark" /> </td>
    <td> <img src="https://gitlab.sauerburger.com/frank/sortednp/-/jobs/artifacts/master/raw/bm_intersect_assume_sorted_binary.png?job=benchmark" /> </td>
    <td> <img src="https://gitlab.sauerburger.com/frank/sortednp/-/jobs/artifacts/master/raw/bm_intersect_assume_sorted_galloping.png?job=benchmark" /> </td>
  </tr>
  <tr>
    <th>Sparseness</th>
    <td> <img src="https://gitlab.sauerburger.com/frank/sortednp/-/jobs/artifacts/master/raw/bm_sparseness_assume_sorted_simple.png?job=benchmark" /> </td>
    <td> <img src="https://gitlab.sauerburger.com/frank/sortednp/-/jobs/artifacts/master/raw/bm_sparseness_assume_sorted_binary.png?job=benchmark" /> </td>
    <td> <img src="https://gitlab.sauerburger.com/frank/sortednp/-/jobs/artifacts/master/raw/bm_sparseness_assume_sorted_galloping.png?job=benchmark" /> </td>
  </tr>
</table>

### Merge
The following chart shows the performance of merging 2 or more arrays as a
function of the array size. It is assumed that the arrays are already sorted.
<img src="https://gitlab.sauerburger.com/frank/sortednp/-/jobs/artifacts/master/raw/bm_merge_assume_sorted.png?job=benchmark" /> 




%package help
Summary:	Development documents and examples for sortednp
Provides:	python3-sortednp-doc
%description help
# Sortednp

[![Pipeline](https://gitlab.sauerburger.com/frank/sortednp/badges/master/pipeline.svg)](https://gitlab.sauerburger.com/frank/sortednp/-/pipelines)
[![Pylint](https://gitlab.sauerburger.com/frank/sortednp/-/jobs/artifacts/master/raw/pylint.svg?job=pylint)](https://gitlab.sauerburger.com/frank/sortednp)
[![C++ lint](https://gitlab.sauerburger.com/frank/sortednp/-/jobs/artifacts/master/raw/cxxlint.svg?job=cpplint)](https://gitlab.sauerburger.com/frank/sortednp)
[![License](https://gitlab.sauerburger.com/frank/sortednp/-/jobs/artifacts/master/raw/license.svg?job=badges)](https://gitlab.sauerburger.com/frank/sortednp/-/blob/master/LICENSE)
[![PyPI](https://gitlab.sauerburger.com/frank/sortednp/-/jobs/artifacts/master/raw/pypi.svg?job=badges)](https://pypi.org/project/sortednp/)

Numpy and Numpy arrays are a really great tool. However, intersecting and
merging multiple sorted numpy arrays is rather less performant. The current numpy
implementation concatenates the two arrays and sorts the combination. If you
want to merge or intersect multiple numpy arrays, there is a much faster way,
by using the property, that the resulting array is sorted.

Sortednp (sorted numpy) operates on sorted numpy arrays to calculate the
intersection or the union of two numpy arrays in an efficient way. The
resulting array is again a sorted numpy array, which can be merged or
intersected with the next array. The intended use case is that sorted numpy
arrays are sorted as the basic data structure and merged or intersected at
request. Typical applications include information retrieval and search engines
in particular.

It is also possible to implement a k-way merging or intersecting algorithm,
which operates on an arbitrary number of arrays at the same time. This package
is intended to deal with arrays with $`10^6`$ or $`10^{10}`$ items. Usually, these
arrays are too large to keep more than two of them in memory at the same
time. This package implements methods to merge and intersect multiple arrays,
which can be loaded on-demand.

## Installation
There are two different methods to install `sortednp`.

### Using `pip` (recommended)

You can install the package directly from PyPI using `pip` (here `pip3`). There are
pre-compiled wheels for `linux` 32- and 64bit.

```bash
$ pip3 install sortednp
```

### Using `setuptools`

Alternatively, you can clone the git repository and run the
setup script.

```bash
$ git clone https://gitlab.sauerburger.com/frank/sortednp.git
$ cd sortednp
$ python3 setup.py install
```
### Numpy Dependency
The installation fails in some cases, because of a build-time dependency on
numpy. Usually, the problem can be solved by manually installing a recent numpy
version via `pip3 install -U numpy`.

## Usage

The package provides two different kinds of methods. The first class is intended
to operate on two arrays. The second class operates on two or more arrays and
calls the first class of methods internally.

### Two-way methods

Two numpy sorted arrays can be merged with the `merge` method, which takes two
numpy arrays and returns the sorted union of the two arrays.

<!-- write merge.py -->
```python
## merge.py
import numpy as np
import sortednp as snp

a = np.array([0, 3, 4, 6, 7])
b = np.array([1, 2, 3, 5, 7, 9])

m = snp.merge(a, b)
print(m)
```

If you run this, you should see the union of both arrays as a sorted numpy
array.
<!-- console_output -->
```python
$ python3 merge.py
[0 1 2 3 3 4 5 6 7 7 9]
```

Two sorted numpy arrays can be intersected with the `intersect` method, which takes two
numpy arrays and returns the sorted intersection of the two arrays.

<!-- write intersect.py -->
```python
## intersect.py
import numpy as np
import sortednp as snp

a = np.array([0, 3, 4, 6, 7])
b = np.array([1, 2, 3, 5, 7, 9])

i = snp.intersect(a, b)
print(i)
```

If you run this, you should see the intersection of both arrays as a sorted numpy
array.
<!-- console_output -->
```python
$ python3 intersect.py
[3 7]
```

Since version 0.4.0, the library provides the `issubset(a, b)` method which
checks if the array `a` is a subset of `b`, and the `isitem(v, a)` method which
checks if `value` is contained in array `a`.

<!-- write set.py -->
```python
## set.py
import numpy as np
import sortednp as snp

a = np.array([2, 4, 5, 10])
b = np.array([1, 2, 3, 4, 5, 6, 10, 11])

print(snp.issubset(a, b))  # a is subset of b
print(snp.issubset(b, a))  # b is not a subset of a

print(snp.isitem(4, a))  # 4 is an item of a
print(snp.isitem(3, a))  # 3 is not an item of a

```

If you execute this example, you get the expected result: `a` is a subset ob
`b`, `4` is a member of `a`.

<!-- console_output -->
```python
$ python3 set.py
True
False
True
False
```


### Returning array indices
The `intersect` method takes an optional argument `indices` which is `False`
by default. If this is set to `True`, the return value consists of the
intersection array and a tuple with the indices of the common values for both
arrays. The index arrays have the length of the output. The indices show the
position in the input from which the value was copied.

<!-- write intersect_indices.py -->
```python
## intersect_indices.py
import numpy as np
import sortednp as snp

a = np.array([2,4,6,8,10])
b = np.array([1,2,3,4])

intersection, indices = snp.intersect(a,b, indices=True)

print(intersection)
print(indices)
```

The above example gives:
<!-- console_output -->
```python
$ python3 intersect_indices.py
[2 4]
(array([0, 1]), array([1, 3]))
```

The first line shows the intersection of the two arrays. The second line
prints a tuple with the indices where the common values appeared in the input
arrays. For example, the value `4` is at position `1` in array `a` and at position
`3` in array `b`. 


Since version 0.3.0, the `merge` has to `indices` argument too. The returned
indices have the length of the inputs. The indices show the position in the
output to which an input value was copied.

<!-- write merge_indices.py -->
```python
## merge_indices.py
import numpy as np
import sortednp as snp

a = np.array([2,4])
b = np.array([3,4,5])

merged, indices = snp.merge(a,b, indices=True)

print(merged)
print(indices)
```

The above example gives:
<!-- console_output -->
```python
$ python3 merge_indices.py
[2 3 4 4 5]
(array([0, 2]), array([1, 3, 4]))
```

The first line shows that the two arrays have been merged. The second line
prints a tuple with the indices. For example, the value `3` from array `b` can
be found at position `1` in the output.

### Duplicate treatment

Since version 0.3.0, sortednp supported multiple different strategies to deal
with duplicated entries.

#### Duplicates during intersecting

There are three different duplicate treatments for the intersect method:

 - `sortednp.DROP`: Ignore any duplicated entries. The output will 
   contain only unique values.

 - `sortednp.KEEP_MIN_N`: If an entry occurs `n` times in one input array and `m`
   times in the other input array, the output will contain the entry `min(n, m)`
   times.

 - `sortednp.KEEP_MAX_N`: If an entry occurs `n` times in one input array and `m`
   times in the other input array, the output will contain the entry `max(n, m)`
   times (assuming the entry occurs at least once in both arrays, i.e.
   `n > 0` and `m > 0`).


The strategy can be selected with the optional `duplicates` argument of
`intersect`. The default is `sortednp.KEEP_MIN_N`. Consider the following example.

<!-- write intersect_duplicates.py -->
```python
## intersect_duplicates.py
import numpy as np
import sortednp as snp

a = np.array([2, 4, 4, 5])    # Twice
b = np.array([3, 4, 4, 4, 5]) # Three times

intersect_drop = snp.intersect(a, b, duplicates=snp.DROP)
print(intersect_drop)  # Contains a single 4

intersect_min = snp.intersect(a, b, duplicates=snp.KEEP_MIN_N)
print(intersect_min)  # Contains 4 twice

intersect_max = snp.intersect(a, b, duplicates=snp.KEEP_MAX_N)
print(intersect_max)  # Contains 4 three times
```

The above example gives:
<!-- console_output -->
```python
$ python3 intersect_duplicates.py
[4 5]
[4 4 5]
[4 4 4 5]
```


#### Duplicates during merging

The `merge` method offers three different duplicates treatment strategies:

 - `sortednp.DROP`: Ignore any duplicated entries. The output will 
   contain only unique values.

 - `sortednp.DROP_IN_INPUT`: Ignores duplicated entries in the input arrays
   separately. This is the same as ensuring that each input array unique values.
   The output contains every value at most twice.

 - `sortednp.KEEP`: Keep all duplicated entries. If an item occurs `n` times in
   one input array and `m` times in the other input array, the output contains
   the item `n + m` times.

The strategy can be selected with the optional `duplicates`.
The default is `sortednp.KEEP`. Consider the following example.

<!-- write merge_duplicates.py -->
```python
## merge_duplicates.py
import numpy as np
import sortednp as snp

a = np.array([2, 4, 4, 5])    # Twice
b = np.array([3, 4, 4, 4, 5]) # Three times

merge_drop = snp.merge(a, b, duplicates=snp.DROP)
print(merge_drop)  # Contains a single 4

merge_dii = snp.merge(a, b, duplicates=snp.DROP_IN_INPUT)
print(merge_dii)  # Contains 4 twice

merge_keep = snp.merge(a, b, duplicates=snp.KEEP)
print(merge_keep)  # Contains 4 five times
```

The above example gives:
<!-- console_output -->
```python
$ python3 merge_duplicates.py
[2 3 4 5]
[2 3 4 4 5 5]
[2 3 4 4 4 4 4 5 5]
```

#### Duplicates during subset checks

The `issubset` method offers two different duplicates treatment strategies:

 - `sortednp.IGNORE`: Ignore any duplications. The method returns True if each
   value in the first array is contained at least once in the second array.
   Duplicated entries in the first array do not change the return value.

 - `sortednp.REPEAT`: For each duplicated item in the first array, require at
   least as many items in the second array. If for one value the first array
   contains more duplicated entries than the second array, the method returns
   False.

The strategy can be selected with the optional `duplicates`.
The default is `sortednp.IGNORE`. Consider the following example.

<!-- write subset_duplicates.py -->
```python
## subset_duplicates.py
import numpy as np
import sortednp as snp

a = np.array([3, 4, 4, 5])    # Twice
b = np.array([3, 4, 4, 4, 5]) # Three times

# Number of occurances ignored
print(snp.issubset(a, b, duplicates=snp.IGNORE))  # is subset
print(snp.issubset(b, a, duplicates=snp.IGNORE))  # is subset

# Number of in subset must be smaller or equal
print(snp.issubset(a, b, duplicates=snp.REPEAT))  # is subset

# three 4s not subset of two 4s
print(snp.issubset(b, a, duplicates=snp.REPEAT))
```

The above example gives:
<!-- console_output -->
```python
$ python3 subset_duplicates.py
True
True
True
False
```

#### Index tracking and duplicates

Tracking indices with the `indices=True` argument is possible while selecting a
non-default duplicate treatment strategy. For merging the indices point to the
position in the output array. If the input has duplicates that were skipped, the
index is simply repeated. For example with `snp.DROP`, if the input is `[9, 9,
9, 9]`, the index array for this input contains four times the position where
`9` is found in the output.

Similarly, with `snp.KEEP_MAX_N` and `intersect`, the index of the last item in
the array with less occurrences is duplicates.

<!-- write duplicates_index.py -->
```python
## duplicates_index.py
import numpy as np
import sortednp as snp

a = np.array([2, 4, 4, 5])    # Twice
b = np.array([3, 4, 4, 4, 5]) # Three times

# Merge
merge_drop, (index_a, index_b) = snp.merge(a, b,
                                           duplicates=snp.DROP,
                                           indices=True)
print(index_b)

# Intersect
intersect_max, (index_a, index_b) = snp.intersect(a, b,
                                                  duplicates=snp.KEEP_MAX_N,
                                                  indices=True)
print(index_a)
```

The above example gives:
<!-- console_output -->
```python
$ python3 duplicates_index.py
[1 2 2 2 3]
[1 2 2 3]
```

For merging, this means that the three `4`s from the input all appear at same position
in the output, namely position `2`.

For the intersect, this means that the second and third occurrence of `4` in the
output, both came from item at position `2` in the input.

### k-way methods
Similarly, the k-way intersect and merge methods take two or more arrays and
perform the merge or intersect operation on its arguments.

<!-- write kway_intersect.py -->
```python
## kway_intersect.py
import numpy as np
import sortednp as snp

a = np.array([0, 3, 4, 6, 7])
b = np.array([0, 3, 5, 7, 9])
c = np.array([1, 2, 3, 5, 7, 9])
d = np.array([2, 3, 6, 7, 8])

i = snp.kway_intersect(a, b, c, d)
print(i)
```

If you run this, you should see the intersection of all four arrays as a sorted numpy
array.
<!-- console_output -->
```python
$ python3 kway_intersect.py
[3 7]
```

The k-way merger `sortednp.kway_merge` works analogously. However, the native
`numpy` implementation is faster compared to the merge provided by this package.
The k-way merger has been added for completeness. The package `heapq` provides
efficient methods to merge multiple arrays simultaneously.

The methods `kway_merge` and `kway_intersect` accept the optional keyword
argument `assume_sorted`. By default, it is set to `True`. If it is set to `False`,
the method calls `sort()` on the input arrays before performing the operation.
The default should be kept if the arrays are already sorted to save the time it
takes to sort the arrays.

Since the arrays might be too large to keep all of them in memory at the same
time, it is possible to pass a `callable` instead of an array to the methods.
The `callable` is expected to return the actual array. It is called immediately
before the array is required. This reduces the memory consumption.

### Algorithms
Intersections are calculated by iterating both arrays. For a given element in
one array, the method needs to search the other and check if the element is
contained. In order to make this more efficient, we can use the fact that the
arrays are sorted. There are three search methods, which can be selected via the
optional keyword argument `algorithm`.

 * `sortednp.SIMPLE_SEARCH`: Search for an element by linearly iterating over the
   array element-by-element.
   [More Information](https://en.wikipedia.org/wiki/Linear_search).
 * `sortednp.BINARY_SEARCH`: Slice the remainder of the array in halves and
   repeat the procedure on the slice which contains the searched element.
   [More Information](https://en.wikipedia.org/wiki/Binary_search_algorithm).
 * `sortednp.GALLOPING_SEARCH`: First, search for an element linearly, doubling
   the step size after each step. If a step goes beyond the search element,
   perform a binary search between the last two positions.
   [More Information](https://en.wikipedia.org/wiki/Exponential_search).

The default is `sortednp.GALLOPING_SEARCH`. The performance of all three
algorithms is compared in the next section. The methods `issubset()` and
`isitem()` also support the algorithm keyword.

## Performance
The performance of the package can be compared with the default implementation
of numpy, the intersect1d` method. The ratio of the execution time between sortednp and numpy is
shown for various different benchmark tests.

The merge or intersect time can be estimated under two different assumptions. If
the arrays, which are merged or intersected, are already sorted, one should not
consider the time it takes to sort the random arrays in the benchmark. On the
other hand, if one considers a scenario in which the arrays are not sorted, one
should take the sorting time into account. The benchmarks here on this page,
assume that the arrays are already sorted. If you would like to benchmark the
package and include the sorting time, have a look at the methods defined in
`ci/benchmark.py`.

The random scattering of the points indicates the uncertainty caused by random
load fluctuations on the benchmark machine (Spikes of serveral orders of
magnitude usualy mean that there was a shortage of memory and large chunks had
to be moved to SWAP.)

### Intersect

The performance of the intersection operation depends on the sparseness of the
two arrays. For example, if the first element of one of the arrays is larger
than all elements in the other array, only the other array has to be searched
(linearly, binarily, or exponentially). Similarly, if the common elements are
far apart in the arrays (sparseness), large chunks of the arrays can be skipped.
The arrays in the benchmark contain random (unique) integers. The sparseness is
defined as the average difference between two consecutive elements in one array.

The first set of tests studies the performance dependence on the size of the
arrays. The second set of tests studies the dependence on the sparseness of the
array for a fixed size of array. Every shows a color-coded comparison of the
performance of intersecting more than two arrays.

<table>
  <tr>
    <th>Test</th>
    <th>Simple Search</th>
    <th>Binary Search</th>
    <th>Galloping Search</th>
  </tr>
  <tr>
    <th>Intersect</th>
    <td> <img src="https://gitlab.sauerburger.com/frank/sortednp/-/jobs/artifacts/master/raw/bm_intersect_assume_sorted_simple.png?job=benchmark" /> </td>
    <td> <img src="https://gitlab.sauerburger.com/frank/sortednp/-/jobs/artifacts/master/raw/bm_intersect_assume_sorted_binary.png?job=benchmark" /> </td>
    <td> <img src="https://gitlab.sauerburger.com/frank/sortednp/-/jobs/artifacts/master/raw/bm_intersect_assume_sorted_galloping.png?job=benchmark" /> </td>
  </tr>
  <tr>
    <th>Sparseness</th>
    <td> <img src="https://gitlab.sauerburger.com/frank/sortednp/-/jobs/artifacts/master/raw/bm_sparseness_assume_sorted_simple.png?job=benchmark" /> </td>
    <td> <img src="https://gitlab.sauerburger.com/frank/sortednp/-/jobs/artifacts/master/raw/bm_sparseness_assume_sorted_binary.png?job=benchmark" /> </td>
    <td> <img src="https://gitlab.sauerburger.com/frank/sortednp/-/jobs/artifacts/master/raw/bm_sparseness_assume_sorted_galloping.png?job=benchmark" /> </td>
  </tr>
</table>

### Merge
The following chart shows the performance of merging 2 or more arrays as a
function of the array size. It is assumed that the arrays are already sorted.
<img src="https://gitlab.sauerburger.com/frank/sortednp/-/jobs/artifacts/master/raw/bm_merge_assume_sorted.png?job=benchmark" /> 




%prep
%autosetup -n sortednp-0.4.0

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-sortednp -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Tue May 30 2023 Python_Bot <Python_Bot@openeuler.org> - 0.4.0-1
- Package Spec generated