summaryrefslogtreecommitdiff
path: root/python-spacy-cld.spec
blob: 462ecb81a2fedb1e77560a9199182d1065a42871 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
%global _empty_manifest_terminate_build 0
Name:		python-spacy-cld
Version:	0.1.0
Release:	1
Summary:	spaCy pipeline component for guessing the language of Doc and Span objects.
License:	MIT
URL:		https://github.com/nickdavidhaynes/spacy-cld
Source0:	https://mirrors.nju.edu.cn/pypi/web/packages/e3/3b/f5344007259b5beb0a8e0d7b9e6b0d2c5c4dcfe674bc94b7497bcc201ee0/spacy_cld-0.1.0.tar.gz
BuildArch:	noarch


%description
# spaCy-CLD: Bringing simple language detection to spaCy

## Installation

`pip install spacy_cld`

## Usage

Adding the spaCy-CLD component to the processing pipeline is relatively simple:

```
import spacy
from spacy_cld import LanguageDetector

nlp = spacy.load('en')
language_detector = LanguageDetector()
nlp.add_pipe(language_detector)
doc = nlp('This is some English text.')

doc._.languages  # ['en']
doc._.language_scores['en']  # 0.96
```

spaCy-CLD operates on `Doc` and `Span` spaCy objects. When called on a `Doc` or `Span`, the object is given two attributes: `languages` (a list of up to 3 language codes) and `language_scores` (a dictionary mapping language codes to confidence scores between 0 and 1).

## Under the hood

spacy-cld is a little extension that wraps the [PYCLD2](https://github.com/aboSamoor/pycld2) Python library, which in turn wraps the [Compact Language Detector 2](https://github.com/CLD2Owners/cld2) C library originally built at Google for the Chromium project. CLD2 uses character n-grams as features and a Naive Bayes classifier to identify 80+ languages from Unicode text strings (or XML/HTML). It can detect up to 3 different languages in a given document, and reports a confidence score (reported in with each language.

For additional details, see the linked project pages for PYCLD2 and CLD2.

%package -n python3-spacy-cld
Summary:	spaCy pipeline component for guessing the language of Doc and Span objects.
Provides:	python-spacy-cld
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-spacy-cld
# spaCy-CLD: Bringing simple language detection to spaCy

## Installation

`pip install spacy_cld`

## Usage

Adding the spaCy-CLD component to the processing pipeline is relatively simple:

```
import spacy
from spacy_cld import LanguageDetector

nlp = spacy.load('en')
language_detector = LanguageDetector()
nlp.add_pipe(language_detector)
doc = nlp('This is some English text.')

doc._.languages  # ['en']
doc._.language_scores['en']  # 0.96
```

spaCy-CLD operates on `Doc` and `Span` spaCy objects. When called on a `Doc` or `Span`, the object is given two attributes: `languages` (a list of up to 3 language codes) and `language_scores` (a dictionary mapping language codes to confidence scores between 0 and 1).

## Under the hood

spacy-cld is a little extension that wraps the [PYCLD2](https://github.com/aboSamoor/pycld2) Python library, which in turn wraps the [Compact Language Detector 2](https://github.com/CLD2Owners/cld2) C library originally built at Google for the Chromium project. CLD2 uses character n-grams as features and a Naive Bayes classifier to identify 80+ languages from Unicode text strings (or XML/HTML). It can detect up to 3 different languages in a given document, and reports a confidence score (reported in with each language.

For additional details, see the linked project pages for PYCLD2 and CLD2.

%package help
Summary:	Development documents and examples for spacy-cld
Provides:	python3-spacy-cld-doc
%description help
# spaCy-CLD: Bringing simple language detection to spaCy

## Installation

`pip install spacy_cld`

## Usage

Adding the spaCy-CLD component to the processing pipeline is relatively simple:

```
import spacy
from spacy_cld import LanguageDetector

nlp = spacy.load('en')
language_detector = LanguageDetector()
nlp.add_pipe(language_detector)
doc = nlp('This is some English text.')

doc._.languages  # ['en']
doc._.language_scores['en']  # 0.96
```

spaCy-CLD operates on `Doc` and `Span` spaCy objects. When called on a `Doc` or `Span`, the object is given two attributes: `languages` (a list of up to 3 language codes) and `language_scores` (a dictionary mapping language codes to confidence scores between 0 and 1).

## Under the hood

spacy-cld is a little extension that wraps the [PYCLD2](https://github.com/aboSamoor/pycld2) Python library, which in turn wraps the [Compact Language Detector 2](https://github.com/CLD2Owners/cld2) C library originally built at Google for the Chromium project. CLD2 uses character n-grams as features and a Naive Bayes classifier to identify 80+ languages from Unicode text strings (or XML/HTML). It can detect up to 3 different languages in a given document, and reports a confidence score (reported in with each language.

For additional details, see the linked project pages for PYCLD2 and CLD2.

%prep
%autosetup -n spacy-cld-0.1.0

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-spacy-cld -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Tue Apr 25 2023 Python_Bot <Python_Bot@openeuler.org> - 0.1.0-1
- Package Spec generated