1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
|
%global _empty_manifest_terminate_build 0
Name: python-streams-explorer
Version: 2.3.0
Release: 1
Summary: Explore Data Pipelines in Apache Kafka.
License: MIT
URL: https://github.com/bakdata/streams-explorer
Source0: https://mirrors.aliyun.com/pypi/web/packages/93/d9/e1caf8690f9fe25a720eeaca2d0e8af4aebdb0ddd77d23d80f4a7fc383ea/streams_explorer-2.3.0.tar.gz
BuildArch: noarch
Requires: python3-loguru
Requires: python3-matplotlib
Requires: python3-networkx
Requires: python3-dynaconf
Requires: python3-httpx
Requires: python3-pydantic
Requires: python3-fastapi-utils
Requires: python3-fastapi
Requires: python3-uvicorn[standard]
Requires: python3-pygraphviz
Requires: python3-confluent-kafka
Requires: python3-cachetools
Requires: python3-kubernetes-asyncio
%description
# Streams Explorer
> Explore Apache Kafka data pipelines in Kubernetes.

> **Note**
> We are participating in the annual Hacktoberfest. If you're looking to contribute, please see our [open issues](https://github.com/bakdata/streams-explorer/issues?q=is%3Aissue+is%3Aopen+sort%3Aupdated-desc+label%3Ahacktoberfest) and use the [standalone installation](#standalone) for development.
## Contents
- [Streams Explorer](#streams-explorer)
- [Features](#features)
- [Overview](#overview)
- [Installation](#installation)
- [Docker Compose](#docker-compose)
- [Deploying to Kubernetes cluster](#deploying-to-kubernetes-cluster)
- [Standalone](#standalone)
- [Backend](#backend)
- [Frontend](#frontend)
- [Configuration](#configuration)
- [Kafka](#kafka)
- [Kafka Connect](#kafka-connect)
- [Kubernetes](#kubernetes)
- [Schema Registry / Karapace](#schema-registry--karapace)
- [Prometheus](#prometheus)
- [AKHQ](#akhq)
- [Redpanda Console](#redpanda-console)
- [Grafana](#grafana)
- [Kibana](#kibana)
- [Elasticsearch](#elasticsearch)
- [Plugins](#plugins)
- [Demo pipeline](#demo-pipeline)
- [Plugin customization](#plugin-customization)
## Features
- Visualization of streaming applications, topics, and connectors
- Monitor all or individual pipelines from multiple namespaces
- Inspection of Avro schema from schema registry
- Integration with [streams-bootstrap](https://github.com/bakdata/streams-bootstrap) and [faust-bootstrap](https://github.com/bakdata/faust-bootstrap), or custom streaming app config parsing from Kubernetes deployments using plugins
- Real-time metrics from Prometheus (consumer lag & read rate, replicas, topic size, messages in & out per second, connector tasks)
- Linking to external services for logging and analysis, such as Kibana, Grafana, Loki, AKHQ, Redpanda Console, and Elasticsearch
- Customizable through Python plugins
## Overview
Visit our introduction [blogpost](https://medium.com/bakdata/exploring-data-pipelines-in-apache-kafka-with-streams-explorer-8337dd11fdad) for a complete overview and demo of Streams Explorer.
## Installation
> **Prerequisites**
> Access to a Kubernetes cluster, where streaming apps and services are deployed.
### Docker Compose
1. Forward the ports to Prometheus. (Kafka Connect, Schema Registry, and other integrations are optional)
2. Start the container
```sh
docker compose up
```
Once the container is started visit <http://localhost:8080>
### Deploying to Kubernetes cluster
1. Add the Helm chart repository
```sh
helm repo add streams-explorer https://bakdata.github.io/streams-explorer
```
2. Install
```sh
helm upgrade --install --values helm-chart/values.yaml streams-explorer streams-explorer/streams-explorer
```
### Standalone
#### Backend
1. Install dependencies using [Poetry](https://python-poetry.org)
```sh
poetry install
```
2. Forward the ports to Prometheus. (Kafka Connect, Schema Registry, and other integrations are optional)
3. Configure the backend in [settings.yaml](backend/settings.yaml).
4. Start the backend server
```sh
poetry run start
```
#### Frontend
1. Install dependencies
```sh
npm ci
```
2. Start the frontend server
```sh
npm run build && npm run prod
```
Visit <http://localhost:3000>
## Configuration
Depending on your type of installation set the configuration for the backend server in this file:
- **Docker Compose**: [docker-compose.yaml](docker-compose.yaml)
- **Kubernetes**: [helm-chart/values.yaml](helm-chart/values.yaml)
- **standalone**: [backend/settings.yaml](backend/settings.yaml)
In the [helm-chart/values.yaml](helm-chart/values.yaml) configuration is done either through the `config` section using double underscore notation, e.g. `K8S__consumer_group_annotation: consumerGroup` or the content of [backend/settings.yaml](backend/settings.yaml) can be pasted under the `settings` section. Alternatively all configuration options can be written as environment variables using double underscore notation and the prefix `SE`, e.g. `SE_K8S__deployment__cluster=false`.
The following configuration options are available:
#### General
- `graph.update_interval` Render the graph every x seconds (int, **required**, default: `30`)
- `graph.layout_arguments` Arguments passed to graphviz layout (string, **required**, default: `-Grankdir=LR -Gnodesep=0.8 -Gpad=10`)
- `graph.pipeline_distance` Increase/decrease vertical space between pipeline graphs by X pixels (int, **required**, default: `500`)
- `graph.resolve.input_pattern_topics.all` If true topics that match (extra) input pattern(s) are connected to the streaming app in the graph containing all pipelines (bool, **required**, default: `false`)
- `graph.resolve.input_pattern_topics.pipelines` If true topics that match (extra) input pattern(s) are connected to the streaming app in pipeline graphs (bool, **required**, default: `false`)
#### Kafka
- `kafka.enable` Enable Kafka (bool, default: `false`)
- `kafka.config` librdkafka configuration properties ([reference](https://github.com/edenhill/librdkafka/blob/master/CONFIGURATION.md)) (dict, default: `{"bootstrap.servers": "localhost:9092"}`)
- `kafka.displayed_information` Configuration options of Kafka topics displayed in the frontend (list of dict)
- `kafka.topic_names_cache.ttl` Cache for retrieving all topic names (used when input topic patterns are resolved) (int, default: `3600`)
#### Kafka Connect
- `kafkaconnect.url` URL of Kafka Connect server (string, default: None)
- `kafkaconnect.update_interval` Fetch connectors every x seconds (int, default: `300`)
- `kafkaconnect.displayed_information` Configuration options of Kafka connectors displayed in the frontend (list of dict)
#### Kubernetes
- `k8s.deployment.cluster` Whether streams-explorer is deployed to Kubernetes cluster (bool, **required**, default: `false`)
- `k8s.deployment.context` Name of cluster (string, optional if running in cluster, default: `kubernetes-cluster`)
- `k8s.deployment.namespaces` Kubernetes namespaces (list of string, **required**, default: `['kubernetes-namespace']`)
- `k8s.containers.ignore` Name of containers that should be ignored/hidden (list of string, default: `['prometheus-jmx-exporter']`)
- `k8s.displayed_information` Details of pod that should be displayed (list of dict, default: `[{'name': 'Labels', 'key': 'metadata.labels'}]`)
- `k8s.labels` Labels used to set attributes of nodes (list of string, **required**, default: `['pipeline']`)
- `k8s.pipeline.label` Attribute of nodes the pipeline name should be extracted from (string, **required**, default: `pipeline`)
- `k8s.consumer_group_annotation` Annotation the consumer group name should be extracted from (string, **required**, default: `consumerGroup`)
#### Schema Registry / Karapace
- `schemaregistry.url` URL of Confluent Schema Registry or Karapace (string, default: None)
#### Prometheus
- `prometheus.url` URL of Prometheus (string, **required**, default: `http://localhost:9090`)
The following exporters are required to collect Kafka metrics for Prometheus:
- [Kafka Exporter](https://github.com/danielqsj/kafka_exporter)
- [Kafka Lag Exporter](https://github.com/lightbend/kafka-lag-exporter)
- [Kafka Connect Exporter](https://github.com/wakeful/kafka_connect_exporter)
#### AKHQ
- `akhq.enable` Enable AKHQ (bool, default: `false`)
- `akhq.url` URL of AKHQ (string, default: `http://localhost:8080`)
- `akhq.cluster` Name of cluster (string, default: `kubernetes-cluster`)
- `akhq.connect` Name of connect (string, default: None)
#### Redpanda Console
Redpanda Console can be used instead of AKHQ. (mutually exclusive)
- `redpanda_console.enable` Enable Redpanda Console (bool, default: `false`)
- `redpanda_console.url` URL of Redpanda Console (string, default: `http://localhost:8080`)
#### Grafana
- `grafana.enable` Enable Grafana (bool, default: `false`)
- `grafana.url` URL of Grafana (string, default: `http://localhost:3000`)
- `grafana.dashboards.topics` Path to topics dashboard (string), sample dashboards for topics and consumer groups are included in the [`./grafana`](https://github.com/bakdata/streams-explorer/tree/main/grafana) subfolder
- `grafana.dashboards.consumergroups` Path to consumer groups dashboard (string)
#### Kibana
- `kibanalogs.enable` Enable Kibana logs (bool, default: `false`)
- `kibanalogs.url` URL of Kibana logs (string, default: `http://localhost:5601`)
#### Loki
Loki can be used instead of Kibana. (mutually exclusive)
- `loki.enable` Enable Loki logs (bool, default: `false`)
- `loki.url` URL of Loki logs (string, default: `http://localhost:3000`)
#### Elasticsearch
for Kafka Connect Elasticsearch connector
- `esindex.url` URL of Elasticsearch index (string, default: `http://localhost:5601/app/kibana#/dev_tools/console`)
#### Plugins
- `plugins.path` Path to folder containing plugins relative to backend (string, **required**, default: `./plugins`)
- `plugins.extractors.default` Whether to load default extractors (bool, **required**, default: `true`)
## Demo pipeline

[ATM Fraud detection with streams-bootstrap](https://github.com/bakdata/streams-explorer/blob/main/demo-atm-fraud/README.md)
## Plugin customization
It is possible to create your own config parser, linker, metric provider, and extractors in Python by implementing the `K8sConfigParser`, `LinkingService`, `MetricProvider`, or `Extractor` classes. This way you can customize it to your specific setup and services. As an example we provide the [`DefaultLinker`](https://github.com/bakdata/streams-explorer/blob/main/backend/streams_explorer/defaultlinker.py) as `LinkingService`. The default [`MetricProvider`](https://github.com/bakdata/streams-explorer/blob/main/backend/streams_explorer/core/services/metric_providers.py) supports Prometheus. Furthermore the following default `Extractor` plugins are included:
- [`ElasticsearchSink`](https://github.com/bakdata/streams-explorer/blob/main/backend/streams_explorer/core/extractor/default/elasticsearch_sink.py)
- [`JdbcSink`](https://github.com/bakdata/streams-explorer/blob/main/backend/streams_explorer/core/extractor/default/jdbc_sink.py)
- [`S3Sink`](https://github.com/bakdata/streams-explorer/blob/main/backend/streams_explorer/core/extractor/default/s3_sink.py)
- [`GenericSink`/`GenericSource`](https://github.com/bakdata/streams-explorer/blob/main/backend/streams_explorer/core/extractor/default/generic.py)
If your streaming application deployments are configured through environment variables, following the schema of [streams-bootstrap](https://github.com/bakdata/streams-bootstrap) or [faust-bootstrap](https://github.com/bakdata/faust-bootstrap), the Streams Explorer works out-of-the-box with the default deployment parser.
For streams-bootstrap deployments configured through CLI arguments a separate parser can be loaded by creating a Python file (e.g. `config_parser.py`) in the plugins folder with the following import statement:
```python
from streams_explorer.core.k8s_config_parser import StreamsBootstrapArgsParser
```
For other setups a custom config parser plugin can be created by inheriting from the [`K8sConfigParser`](https://github.com/bakdata/streams-explorer/blob/main/backend/streams_explorer/core/k8s_config_parser.py) class and implementing the `parse` method. In this example we're retrieving the streaming app configurations from an external REST API. In order for a deployment to be indentified as streaming app, input and output topics are required.
```python
import httpx
from streams_explorer.core.k8s_config_parser import K8sConfigParser
from streams_explorer.models.k8s import K8sConfig
class CustomConfigParser(K8sConfigParser):
def get_name(self) -> str:
name = self.k8s_app.metadata.name
if not name:
raise TypeError(f"Name is required for {self.k8s_app.class_name}")
return name
def parse(self) -> K8sConfig:
"""Retrieve app config from REST endpoint."""
name = self.get_name()
data = httpx.get(f"url/config/{name}").json()
return K8sConfig(**data)
```
%package -n python3-streams-explorer
Summary: Explore Data Pipelines in Apache Kafka.
Provides: python-streams-explorer
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-streams-explorer
# Streams Explorer
> Explore Apache Kafka data pipelines in Kubernetes.

> **Note**
> We are participating in the annual Hacktoberfest. If you're looking to contribute, please see our [open issues](https://github.com/bakdata/streams-explorer/issues?q=is%3Aissue+is%3Aopen+sort%3Aupdated-desc+label%3Ahacktoberfest) and use the [standalone installation](#standalone) for development.
## Contents
- [Streams Explorer](#streams-explorer)
- [Features](#features)
- [Overview](#overview)
- [Installation](#installation)
- [Docker Compose](#docker-compose)
- [Deploying to Kubernetes cluster](#deploying-to-kubernetes-cluster)
- [Standalone](#standalone)
- [Backend](#backend)
- [Frontend](#frontend)
- [Configuration](#configuration)
- [Kafka](#kafka)
- [Kafka Connect](#kafka-connect)
- [Kubernetes](#kubernetes)
- [Schema Registry / Karapace](#schema-registry--karapace)
- [Prometheus](#prometheus)
- [AKHQ](#akhq)
- [Redpanda Console](#redpanda-console)
- [Grafana](#grafana)
- [Kibana](#kibana)
- [Elasticsearch](#elasticsearch)
- [Plugins](#plugins)
- [Demo pipeline](#demo-pipeline)
- [Plugin customization](#plugin-customization)
## Features
- Visualization of streaming applications, topics, and connectors
- Monitor all or individual pipelines from multiple namespaces
- Inspection of Avro schema from schema registry
- Integration with [streams-bootstrap](https://github.com/bakdata/streams-bootstrap) and [faust-bootstrap](https://github.com/bakdata/faust-bootstrap), or custom streaming app config parsing from Kubernetes deployments using plugins
- Real-time metrics from Prometheus (consumer lag & read rate, replicas, topic size, messages in & out per second, connector tasks)
- Linking to external services for logging and analysis, such as Kibana, Grafana, Loki, AKHQ, Redpanda Console, and Elasticsearch
- Customizable through Python plugins
## Overview
Visit our introduction [blogpost](https://medium.com/bakdata/exploring-data-pipelines-in-apache-kafka-with-streams-explorer-8337dd11fdad) for a complete overview and demo of Streams Explorer.
## Installation
> **Prerequisites**
> Access to a Kubernetes cluster, where streaming apps and services are deployed.
### Docker Compose
1. Forward the ports to Prometheus. (Kafka Connect, Schema Registry, and other integrations are optional)
2. Start the container
```sh
docker compose up
```
Once the container is started visit <http://localhost:8080>
### Deploying to Kubernetes cluster
1. Add the Helm chart repository
```sh
helm repo add streams-explorer https://bakdata.github.io/streams-explorer
```
2. Install
```sh
helm upgrade --install --values helm-chart/values.yaml streams-explorer streams-explorer/streams-explorer
```
### Standalone
#### Backend
1. Install dependencies using [Poetry](https://python-poetry.org)
```sh
poetry install
```
2. Forward the ports to Prometheus. (Kafka Connect, Schema Registry, and other integrations are optional)
3. Configure the backend in [settings.yaml](backend/settings.yaml).
4. Start the backend server
```sh
poetry run start
```
#### Frontend
1. Install dependencies
```sh
npm ci
```
2. Start the frontend server
```sh
npm run build && npm run prod
```
Visit <http://localhost:3000>
## Configuration
Depending on your type of installation set the configuration for the backend server in this file:
- **Docker Compose**: [docker-compose.yaml](docker-compose.yaml)
- **Kubernetes**: [helm-chart/values.yaml](helm-chart/values.yaml)
- **standalone**: [backend/settings.yaml](backend/settings.yaml)
In the [helm-chart/values.yaml](helm-chart/values.yaml) configuration is done either through the `config` section using double underscore notation, e.g. `K8S__consumer_group_annotation: consumerGroup` or the content of [backend/settings.yaml](backend/settings.yaml) can be pasted under the `settings` section. Alternatively all configuration options can be written as environment variables using double underscore notation and the prefix `SE`, e.g. `SE_K8S__deployment__cluster=false`.
The following configuration options are available:
#### General
- `graph.update_interval` Render the graph every x seconds (int, **required**, default: `30`)
- `graph.layout_arguments` Arguments passed to graphviz layout (string, **required**, default: `-Grankdir=LR -Gnodesep=0.8 -Gpad=10`)
- `graph.pipeline_distance` Increase/decrease vertical space between pipeline graphs by X pixels (int, **required**, default: `500`)
- `graph.resolve.input_pattern_topics.all` If true topics that match (extra) input pattern(s) are connected to the streaming app in the graph containing all pipelines (bool, **required**, default: `false`)
- `graph.resolve.input_pattern_topics.pipelines` If true topics that match (extra) input pattern(s) are connected to the streaming app in pipeline graphs (bool, **required**, default: `false`)
#### Kafka
- `kafka.enable` Enable Kafka (bool, default: `false`)
- `kafka.config` librdkafka configuration properties ([reference](https://github.com/edenhill/librdkafka/blob/master/CONFIGURATION.md)) (dict, default: `{"bootstrap.servers": "localhost:9092"}`)
- `kafka.displayed_information` Configuration options of Kafka topics displayed in the frontend (list of dict)
- `kafka.topic_names_cache.ttl` Cache for retrieving all topic names (used when input topic patterns are resolved) (int, default: `3600`)
#### Kafka Connect
- `kafkaconnect.url` URL of Kafka Connect server (string, default: None)
- `kafkaconnect.update_interval` Fetch connectors every x seconds (int, default: `300`)
- `kafkaconnect.displayed_information` Configuration options of Kafka connectors displayed in the frontend (list of dict)
#### Kubernetes
- `k8s.deployment.cluster` Whether streams-explorer is deployed to Kubernetes cluster (bool, **required**, default: `false`)
- `k8s.deployment.context` Name of cluster (string, optional if running in cluster, default: `kubernetes-cluster`)
- `k8s.deployment.namespaces` Kubernetes namespaces (list of string, **required**, default: `['kubernetes-namespace']`)
- `k8s.containers.ignore` Name of containers that should be ignored/hidden (list of string, default: `['prometheus-jmx-exporter']`)
- `k8s.displayed_information` Details of pod that should be displayed (list of dict, default: `[{'name': 'Labels', 'key': 'metadata.labels'}]`)
- `k8s.labels` Labels used to set attributes of nodes (list of string, **required**, default: `['pipeline']`)
- `k8s.pipeline.label` Attribute of nodes the pipeline name should be extracted from (string, **required**, default: `pipeline`)
- `k8s.consumer_group_annotation` Annotation the consumer group name should be extracted from (string, **required**, default: `consumerGroup`)
#### Schema Registry / Karapace
- `schemaregistry.url` URL of Confluent Schema Registry or Karapace (string, default: None)
#### Prometheus
- `prometheus.url` URL of Prometheus (string, **required**, default: `http://localhost:9090`)
The following exporters are required to collect Kafka metrics for Prometheus:
- [Kafka Exporter](https://github.com/danielqsj/kafka_exporter)
- [Kafka Lag Exporter](https://github.com/lightbend/kafka-lag-exporter)
- [Kafka Connect Exporter](https://github.com/wakeful/kafka_connect_exporter)
#### AKHQ
- `akhq.enable` Enable AKHQ (bool, default: `false`)
- `akhq.url` URL of AKHQ (string, default: `http://localhost:8080`)
- `akhq.cluster` Name of cluster (string, default: `kubernetes-cluster`)
- `akhq.connect` Name of connect (string, default: None)
#### Redpanda Console
Redpanda Console can be used instead of AKHQ. (mutually exclusive)
- `redpanda_console.enable` Enable Redpanda Console (bool, default: `false`)
- `redpanda_console.url` URL of Redpanda Console (string, default: `http://localhost:8080`)
#### Grafana
- `grafana.enable` Enable Grafana (bool, default: `false`)
- `grafana.url` URL of Grafana (string, default: `http://localhost:3000`)
- `grafana.dashboards.topics` Path to topics dashboard (string), sample dashboards for topics and consumer groups are included in the [`./grafana`](https://github.com/bakdata/streams-explorer/tree/main/grafana) subfolder
- `grafana.dashboards.consumergroups` Path to consumer groups dashboard (string)
#### Kibana
- `kibanalogs.enable` Enable Kibana logs (bool, default: `false`)
- `kibanalogs.url` URL of Kibana logs (string, default: `http://localhost:5601`)
#### Loki
Loki can be used instead of Kibana. (mutually exclusive)
- `loki.enable` Enable Loki logs (bool, default: `false`)
- `loki.url` URL of Loki logs (string, default: `http://localhost:3000`)
#### Elasticsearch
for Kafka Connect Elasticsearch connector
- `esindex.url` URL of Elasticsearch index (string, default: `http://localhost:5601/app/kibana#/dev_tools/console`)
#### Plugins
- `plugins.path` Path to folder containing plugins relative to backend (string, **required**, default: `./plugins`)
- `plugins.extractors.default` Whether to load default extractors (bool, **required**, default: `true`)
## Demo pipeline

[ATM Fraud detection with streams-bootstrap](https://github.com/bakdata/streams-explorer/blob/main/demo-atm-fraud/README.md)
## Plugin customization
It is possible to create your own config parser, linker, metric provider, and extractors in Python by implementing the `K8sConfigParser`, `LinkingService`, `MetricProvider`, or `Extractor` classes. This way you can customize it to your specific setup and services. As an example we provide the [`DefaultLinker`](https://github.com/bakdata/streams-explorer/blob/main/backend/streams_explorer/defaultlinker.py) as `LinkingService`. The default [`MetricProvider`](https://github.com/bakdata/streams-explorer/blob/main/backend/streams_explorer/core/services/metric_providers.py) supports Prometheus. Furthermore the following default `Extractor` plugins are included:
- [`ElasticsearchSink`](https://github.com/bakdata/streams-explorer/blob/main/backend/streams_explorer/core/extractor/default/elasticsearch_sink.py)
- [`JdbcSink`](https://github.com/bakdata/streams-explorer/blob/main/backend/streams_explorer/core/extractor/default/jdbc_sink.py)
- [`S3Sink`](https://github.com/bakdata/streams-explorer/blob/main/backend/streams_explorer/core/extractor/default/s3_sink.py)
- [`GenericSink`/`GenericSource`](https://github.com/bakdata/streams-explorer/blob/main/backend/streams_explorer/core/extractor/default/generic.py)
If your streaming application deployments are configured through environment variables, following the schema of [streams-bootstrap](https://github.com/bakdata/streams-bootstrap) or [faust-bootstrap](https://github.com/bakdata/faust-bootstrap), the Streams Explorer works out-of-the-box with the default deployment parser.
For streams-bootstrap deployments configured through CLI arguments a separate parser can be loaded by creating a Python file (e.g. `config_parser.py`) in the plugins folder with the following import statement:
```python
from streams_explorer.core.k8s_config_parser import StreamsBootstrapArgsParser
```
For other setups a custom config parser plugin can be created by inheriting from the [`K8sConfigParser`](https://github.com/bakdata/streams-explorer/blob/main/backend/streams_explorer/core/k8s_config_parser.py) class and implementing the `parse` method. In this example we're retrieving the streaming app configurations from an external REST API. In order for a deployment to be indentified as streaming app, input and output topics are required.
```python
import httpx
from streams_explorer.core.k8s_config_parser import K8sConfigParser
from streams_explorer.models.k8s import K8sConfig
class CustomConfigParser(K8sConfigParser):
def get_name(self) -> str:
name = self.k8s_app.metadata.name
if not name:
raise TypeError(f"Name is required for {self.k8s_app.class_name}")
return name
def parse(self) -> K8sConfig:
"""Retrieve app config from REST endpoint."""
name = self.get_name()
data = httpx.get(f"url/config/{name}").json()
return K8sConfig(**data)
```
%package help
Summary: Development documents and examples for streams-explorer
Provides: python3-streams-explorer-doc
%description help
# Streams Explorer
> Explore Apache Kafka data pipelines in Kubernetes.

> **Note**
> We are participating in the annual Hacktoberfest. If you're looking to contribute, please see our [open issues](https://github.com/bakdata/streams-explorer/issues?q=is%3Aissue+is%3Aopen+sort%3Aupdated-desc+label%3Ahacktoberfest) and use the [standalone installation](#standalone) for development.
## Contents
- [Streams Explorer](#streams-explorer)
- [Features](#features)
- [Overview](#overview)
- [Installation](#installation)
- [Docker Compose](#docker-compose)
- [Deploying to Kubernetes cluster](#deploying-to-kubernetes-cluster)
- [Standalone](#standalone)
- [Backend](#backend)
- [Frontend](#frontend)
- [Configuration](#configuration)
- [Kafka](#kafka)
- [Kafka Connect](#kafka-connect)
- [Kubernetes](#kubernetes)
- [Schema Registry / Karapace](#schema-registry--karapace)
- [Prometheus](#prometheus)
- [AKHQ](#akhq)
- [Redpanda Console](#redpanda-console)
- [Grafana](#grafana)
- [Kibana](#kibana)
- [Elasticsearch](#elasticsearch)
- [Plugins](#plugins)
- [Demo pipeline](#demo-pipeline)
- [Plugin customization](#plugin-customization)
## Features
- Visualization of streaming applications, topics, and connectors
- Monitor all or individual pipelines from multiple namespaces
- Inspection of Avro schema from schema registry
- Integration with [streams-bootstrap](https://github.com/bakdata/streams-bootstrap) and [faust-bootstrap](https://github.com/bakdata/faust-bootstrap), or custom streaming app config parsing from Kubernetes deployments using plugins
- Real-time metrics from Prometheus (consumer lag & read rate, replicas, topic size, messages in & out per second, connector tasks)
- Linking to external services for logging and analysis, such as Kibana, Grafana, Loki, AKHQ, Redpanda Console, and Elasticsearch
- Customizable through Python plugins
## Overview
Visit our introduction [blogpost](https://medium.com/bakdata/exploring-data-pipelines-in-apache-kafka-with-streams-explorer-8337dd11fdad) for a complete overview and demo of Streams Explorer.
## Installation
> **Prerequisites**
> Access to a Kubernetes cluster, where streaming apps and services are deployed.
### Docker Compose
1. Forward the ports to Prometheus. (Kafka Connect, Schema Registry, and other integrations are optional)
2. Start the container
```sh
docker compose up
```
Once the container is started visit <http://localhost:8080>
### Deploying to Kubernetes cluster
1. Add the Helm chart repository
```sh
helm repo add streams-explorer https://bakdata.github.io/streams-explorer
```
2. Install
```sh
helm upgrade --install --values helm-chart/values.yaml streams-explorer streams-explorer/streams-explorer
```
### Standalone
#### Backend
1. Install dependencies using [Poetry](https://python-poetry.org)
```sh
poetry install
```
2. Forward the ports to Prometheus. (Kafka Connect, Schema Registry, and other integrations are optional)
3. Configure the backend in [settings.yaml](backend/settings.yaml).
4. Start the backend server
```sh
poetry run start
```
#### Frontend
1. Install dependencies
```sh
npm ci
```
2. Start the frontend server
```sh
npm run build && npm run prod
```
Visit <http://localhost:3000>
## Configuration
Depending on your type of installation set the configuration for the backend server in this file:
- **Docker Compose**: [docker-compose.yaml](docker-compose.yaml)
- **Kubernetes**: [helm-chart/values.yaml](helm-chart/values.yaml)
- **standalone**: [backend/settings.yaml](backend/settings.yaml)
In the [helm-chart/values.yaml](helm-chart/values.yaml) configuration is done either through the `config` section using double underscore notation, e.g. `K8S__consumer_group_annotation: consumerGroup` or the content of [backend/settings.yaml](backend/settings.yaml) can be pasted under the `settings` section. Alternatively all configuration options can be written as environment variables using double underscore notation and the prefix `SE`, e.g. `SE_K8S__deployment__cluster=false`.
The following configuration options are available:
#### General
- `graph.update_interval` Render the graph every x seconds (int, **required**, default: `30`)
- `graph.layout_arguments` Arguments passed to graphviz layout (string, **required**, default: `-Grankdir=LR -Gnodesep=0.8 -Gpad=10`)
- `graph.pipeline_distance` Increase/decrease vertical space between pipeline graphs by X pixels (int, **required**, default: `500`)
- `graph.resolve.input_pattern_topics.all` If true topics that match (extra) input pattern(s) are connected to the streaming app in the graph containing all pipelines (bool, **required**, default: `false`)
- `graph.resolve.input_pattern_topics.pipelines` If true topics that match (extra) input pattern(s) are connected to the streaming app in pipeline graphs (bool, **required**, default: `false`)
#### Kafka
- `kafka.enable` Enable Kafka (bool, default: `false`)
- `kafka.config` librdkafka configuration properties ([reference](https://github.com/edenhill/librdkafka/blob/master/CONFIGURATION.md)) (dict, default: `{"bootstrap.servers": "localhost:9092"}`)
- `kafka.displayed_information` Configuration options of Kafka topics displayed in the frontend (list of dict)
- `kafka.topic_names_cache.ttl` Cache for retrieving all topic names (used when input topic patterns are resolved) (int, default: `3600`)
#### Kafka Connect
- `kafkaconnect.url` URL of Kafka Connect server (string, default: None)
- `kafkaconnect.update_interval` Fetch connectors every x seconds (int, default: `300`)
- `kafkaconnect.displayed_information` Configuration options of Kafka connectors displayed in the frontend (list of dict)
#### Kubernetes
- `k8s.deployment.cluster` Whether streams-explorer is deployed to Kubernetes cluster (bool, **required**, default: `false`)
- `k8s.deployment.context` Name of cluster (string, optional if running in cluster, default: `kubernetes-cluster`)
- `k8s.deployment.namespaces` Kubernetes namespaces (list of string, **required**, default: `['kubernetes-namespace']`)
- `k8s.containers.ignore` Name of containers that should be ignored/hidden (list of string, default: `['prometheus-jmx-exporter']`)
- `k8s.displayed_information` Details of pod that should be displayed (list of dict, default: `[{'name': 'Labels', 'key': 'metadata.labels'}]`)
- `k8s.labels` Labels used to set attributes of nodes (list of string, **required**, default: `['pipeline']`)
- `k8s.pipeline.label` Attribute of nodes the pipeline name should be extracted from (string, **required**, default: `pipeline`)
- `k8s.consumer_group_annotation` Annotation the consumer group name should be extracted from (string, **required**, default: `consumerGroup`)
#### Schema Registry / Karapace
- `schemaregistry.url` URL of Confluent Schema Registry or Karapace (string, default: None)
#### Prometheus
- `prometheus.url` URL of Prometheus (string, **required**, default: `http://localhost:9090`)
The following exporters are required to collect Kafka metrics for Prometheus:
- [Kafka Exporter](https://github.com/danielqsj/kafka_exporter)
- [Kafka Lag Exporter](https://github.com/lightbend/kafka-lag-exporter)
- [Kafka Connect Exporter](https://github.com/wakeful/kafka_connect_exporter)
#### AKHQ
- `akhq.enable` Enable AKHQ (bool, default: `false`)
- `akhq.url` URL of AKHQ (string, default: `http://localhost:8080`)
- `akhq.cluster` Name of cluster (string, default: `kubernetes-cluster`)
- `akhq.connect` Name of connect (string, default: None)
#### Redpanda Console
Redpanda Console can be used instead of AKHQ. (mutually exclusive)
- `redpanda_console.enable` Enable Redpanda Console (bool, default: `false`)
- `redpanda_console.url` URL of Redpanda Console (string, default: `http://localhost:8080`)
#### Grafana
- `grafana.enable` Enable Grafana (bool, default: `false`)
- `grafana.url` URL of Grafana (string, default: `http://localhost:3000`)
- `grafana.dashboards.topics` Path to topics dashboard (string), sample dashboards for topics and consumer groups are included in the [`./grafana`](https://github.com/bakdata/streams-explorer/tree/main/grafana) subfolder
- `grafana.dashboards.consumergroups` Path to consumer groups dashboard (string)
#### Kibana
- `kibanalogs.enable` Enable Kibana logs (bool, default: `false`)
- `kibanalogs.url` URL of Kibana logs (string, default: `http://localhost:5601`)
#### Loki
Loki can be used instead of Kibana. (mutually exclusive)
- `loki.enable` Enable Loki logs (bool, default: `false`)
- `loki.url` URL of Loki logs (string, default: `http://localhost:3000`)
#### Elasticsearch
for Kafka Connect Elasticsearch connector
- `esindex.url` URL of Elasticsearch index (string, default: `http://localhost:5601/app/kibana#/dev_tools/console`)
#### Plugins
- `plugins.path` Path to folder containing plugins relative to backend (string, **required**, default: `./plugins`)
- `plugins.extractors.default` Whether to load default extractors (bool, **required**, default: `true`)
## Demo pipeline

[ATM Fraud detection with streams-bootstrap](https://github.com/bakdata/streams-explorer/blob/main/demo-atm-fraud/README.md)
## Plugin customization
It is possible to create your own config parser, linker, metric provider, and extractors in Python by implementing the `K8sConfigParser`, `LinkingService`, `MetricProvider`, or `Extractor` classes. This way you can customize it to your specific setup and services. As an example we provide the [`DefaultLinker`](https://github.com/bakdata/streams-explorer/blob/main/backend/streams_explorer/defaultlinker.py) as `LinkingService`. The default [`MetricProvider`](https://github.com/bakdata/streams-explorer/blob/main/backend/streams_explorer/core/services/metric_providers.py) supports Prometheus. Furthermore the following default `Extractor` plugins are included:
- [`ElasticsearchSink`](https://github.com/bakdata/streams-explorer/blob/main/backend/streams_explorer/core/extractor/default/elasticsearch_sink.py)
- [`JdbcSink`](https://github.com/bakdata/streams-explorer/blob/main/backend/streams_explorer/core/extractor/default/jdbc_sink.py)
- [`S3Sink`](https://github.com/bakdata/streams-explorer/blob/main/backend/streams_explorer/core/extractor/default/s3_sink.py)
- [`GenericSink`/`GenericSource`](https://github.com/bakdata/streams-explorer/blob/main/backend/streams_explorer/core/extractor/default/generic.py)
If your streaming application deployments are configured through environment variables, following the schema of [streams-bootstrap](https://github.com/bakdata/streams-bootstrap) or [faust-bootstrap](https://github.com/bakdata/faust-bootstrap), the Streams Explorer works out-of-the-box with the default deployment parser.
For streams-bootstrap deployments configured through CLI arguments a separate parser can be loaded by creating a Python file (e.g. `config_parser.py`) in the plugins folder with the following import statement:
```python
from streams_explorer.core.k8s_config_parser import StreamsBootstrapArgsParser
```
For other setups a custom config parser plugin can be created by inheriting from the [`K8sConfigParser`](https://github.com/bakdata/streams-explorer/blob/main/backend/streams_explorer/core/k8s_config_parser.py) class and implementing the `parse` method. In this example we're retrieving the streaming app configurations from an external REST API. In order for a deployment to be indentified as streaming app, input and output topics are required.
```python
import httpx
from streams_explorer.core.k8s_config_parser import K8sConfigParser
from streams_explorer.models.k8s import K8sConfig
class CustomConfigParser(K8sConfigParser):
def get_name(self) -> str:
name = self.k8s_app.metadata.name
if not name:
raise TypeError(f"Name is required for {self.k8s_app.class_name}")
return name
def parse(self) -> K8sConfig:
"""Retrieve app config from REST endpoint."""
name = self.get_name()
data = httpx.get(f"url/config/{name}").json()
return K8sConfig(**data)
```
%prep
%autosetup -n streams_explorer-2.3.0
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "\"/%h/%f.gz\"\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-streams-explorer -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Fri Jun 09 2023 Python_Bot <Python_Bot@openeuler.org> - 2.3.0-1
- Package Spec generated
|