summaryrefslogtreecommitdiff
path: root/python-string-kernels.spec
blob: d58fa732225334177d9add8fad5bd95ffa3eecd9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
%global _empty_manifest_terminate_build 0
Name:		python-string-kernels
Version:	1.1.2
Release:	1
Summary:	Polynomial String Kernel and linear time String Kernel. Supports multithreading and is compatible with Scikit-Learn SVMs.
License:	Academic Free License (AFL)
URL:		https://github.com/weekend37/string-kernels
Source0:	https://mirrors.aliyun.com/pypi/web/packages/ff/e7/04765217cdeced887f495c6833a93227d89f8342b1254f8979d294cb8874/string-kernels-1.1.2.tar.gz
BuildArch:	noarch


%description
# String Kernels

This package contains an implementation of the **Polynomial String Kernel** and a linear time **String Kernel** algorithm as described in our paper, [High Resolution Ancestry Deconvolution for Next Generation Genomic Data](https://www.biorxiv.org/content/10.1101/2021.09.19.460980v1). <br/><br/>

<img caption="String Kernel Computations" src="https://raw.githubusercontent.com/weekend37/string-kernels/master/doc/fig/triangular_numbers.png">

It offers

- Linear time computation of two effective string kernels.

- Compatibility with Scikit-Learn's Support Vector Machines (easy plug-in).

- Multithreading.

## Usage

To install the package, execute from the command line

```
pip install string-kernels
```

And then you're all set!

Assuming you have [Scikit-Learn](https://scikit-learn.org/) already installed, you can use Lodhi's string kernel via

```python
from sklearn import svm
from stringkernels.kernels import string_kernel
model = svm.SVC(kernel=string_kernel())
```

and the polynomial string kernel,

```python
from sklearn import svm
from stringkernels.kernels import polynomial_string_kernel
model = svm.SVC(kernel=polynomial_string_kernel())
```

For morer information read the [docs](https://github.com/weekend37/string-kernels/blob/master/doc/docs.md) or take a look at the notebook [example.ipynb](https://github.com/weekend37/string-kernels/blob/master/example.ipynb) for further demonstration of usage.

If you end up using this in your research we kindly ask you to cite us! :)




%package -n python3-string-kernels
Summary:	Polynomial String Kernel and linear time String Kernel. Supports multithreading and is compatible with Scikit-Learn SVMs.
Provides:	python-string-kernels
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-string-kernels
# String Kernels

This package contains an implementation of the **Polynomial String Kernel** and a linear time **String Kernel** algorithm as described in our paper, [High Resolution Ancestry Deconvolution for Next Generation Genomic Data](https://www.biorxiv.org/content/10.1101/2021.09.19.460980v1). <br/><br/>

<img caption="String Kernel Computations" src="https://raw.githubusercontent.com/weekend37/string-kernels/master/doc/fig/triangular_numbers.png">

It offers

- Linear time computation of two effective string kernels.

- Compatibility with Scikit-Learn's Support Vector Machines (easy plug-in).

- Multithreading.

## Usage

To install the package, execute from the command line

```
pip install string-kernels
```

And then you're all set!

Assuming you have [Scikit-Learn](https://scikit-learn.org/) already installed, you can use Lodhi's string kernel via

```python
from sklearn import svm
from stringkernels.kernels import string_kernel
model = svm.SVC(kernel=string_kernel())
```

and the polynomial string kernel,

```python
from sklearn import svm
from stringkernels.kernels import polynomial_string_kernel
model = svm.SVC(kernel=polynomial_string_kernel())
```

For morer information read the [docs](https://github.com/weekend37/string-kernels/blob/master/doc/docs.md) or take a look at the notebook [example.ipynb](https://github.com/weekend37/string-kernels/blob/master/example.ipynb) for further demonstration of usage.

If you end up using this in your research we kindly ask you to cite us! :)




%package help
Summary:	Development documents and examples for string-kernels
Provides:	python3-string-kernels-doc
%description help
# String Kernels

This package contains an implementation of the **Polynomial String Kernel** and a linear time **String Kernel** algorithm as described in our paper, [High Resolution Ancestry Deconvolution for Next Generation Genomic Data](https://www.biorxiv.org/content/10.1101/2021.09.19.460980v1). <br/><br/>

<img caption="String Kernel Computations" src="https://raw.githubusercontent.com/weekend37/string-kernels/master/doc/fig/triangular_numbers.png">

It offers

- Linear time computation of two effective string kernels.

- Compatibility with Scikit-Learn's Support Vector Machines (easy plug-in).

- Multithreading.

## Usage

To install the package, execute from the command line

```
pip install string-kernels
```

And then you're all set!

Assuming you have [Scikit-Learn](https://scikit-learn.org/) already installed, you can use Lodhi's string kernel via

```python
from sklearn import svm
from stringkernels.kernels import string_kernel
model = svm.SVC(kernel=string_kernel())
```

and the polynomial string kernel,

```python
from sklearn import svm
from stringkernels.kernels import polynomial_string_kernel
model = svm.SVC(kernel=polynomial_string_kernel())
```

For morer information read the [docs](https://github.com/weekend37/string-kernels/blob/master/doc/docs.md) or take a look at the notebook [example.ipynb](https://github.com/weekend37/string-kernels/blob/master/example.ipynb) for further demonstration of usage.

If you end up using this in your research we kindly ask you to cite us! :)




%prep
%autosetup -n string-kernels-1.1.2

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "\"/%h/%f.gz\"\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-string-kernels -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Fri Jun 09 2023 Python_Bot <Python_Bot@openeuler.org> - 1.1.2-1
- Package Spec generated